Patents by Inventor Vince P. Tondiglia

Vince P. Tondiglia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8077274
    Abstract: Described herein are the materials, mechanisms and procedures for optimizing various performance parameters of HPDLC optical devices in order to meet differing performance requirements. These optimization tailoring techniques include control and independent optimization of switchable HPDLC optical devices to meet the demanding requirements of anticipated applications for, inter alia, the telecommunications and display industries. These techniques include optimization of diffraction efficiency, i.e., index modulation, polarization dependence control, haze, cosmetic quality, control of response and relaxation time, voltage driving for on and off switching, and material uniformity. This control and independent optimization tailors properties of switchable HPDLC optical devices according to the specific requirements of the application of the switchable HPDLC optical device.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: December 13, 2011
    Assignee: Science Applications International Corporation
    Inventors: Richard L. Sutherland, Stephen A. Siwecki, Vince P. Tondiglia
  • Publication number: 20110102711
    Abstract: Described herein are the materials, mechanisms and procedures for optimizing various performance parameters of HPDLC optical devices in order to meet differing performance requirements. These optimization tailoring techniques include control and independent optimization of switchable HPDLC optical devices to meet the demanding requirements of anticipated applications for, inter alia, the telecommunications and display industries. These techniques include optimization of diffraction efficiency, i.e., index modulation, polarization dependence control, haze, cosmetic quality, control of response and relaxation time, voltage driving for on and off switching, and material uniformity. This control and independent optimization tailors properties of switchable HPDLC optical devices according to the specific requirements of the application of the switchable HPDLC optical device.
    Type: Application
    Filed: January 6, 2011
    Publication date: May 5, 2011
    Inventors: Richard L. Sutherland, Stephen A. Siwecki, Vince P. Tondiglia
  • Patent number: 7872707
    Abstract: Described herein are the materials, mechanisms and procedures for optimizing various performance parameters of HPDLC optical devices in order to meet differing performance requirements. These optimization tailoring techniques include control and independent optimization of switchable HPDLC optical devices to meet the demanding requirements of anticipated applications for, inter alia, the telecommunications and display industries. These techniques include optimization of diffraction efficiency, i.e., index modulation, polarization dependence control, haze, cosmetic quality, control of response and relaxation time, voltage driving for on and off switching, and material uniformity. This control and independent optimization tailors properties of switchable HPDLC optical devices according to the specific requirements of the application of the switchable HPDLC optical device.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: January 18, 2011
    Assignee: Science Applications International Corporation
    Inventors: Richard L. Sutherland, Stephen A. Siwecki, Vince P. Tondiglia
  • Patent number: 7605882
    Abstract: Described herein are the materials, mechanisms and procedures for optimizing various performance parameters of HPDLC optical devices in order to meet differing performance requirements. These optimization tailoring techniques include control and independent optimization of switchable HPDLC optical devices to meet the demanding requirements of anticipated applications for, inter alia, the telecommunications and display industries. These techniques include optimization of diffraction efficiency, i.e., index modulation, polarization dependence control, haze, cosmetic quality, control of response and relaxation time, voltage driving for on and off switching, and material uniformity. This control and independent optimization tailors properties of switchable HPDLC optical devices according to the specific requirements of the application of the switchable HPDLC optical device.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: October 20, 2009
    Assignee: Science Applications International Corporation
    Inventors: Richard L. Sutherland, Stephen A. Siwecki, Vince P. Tondiglia
  • Patent number: 7570405
    Abstract: Described herein are the materials, mechanisms and procedures for optimizing various performance parameters of HPDLC optical devices in order to meet differing performance requirements. These optimization tailoring techniques include control and independent optimization of switchable HPDLC optical devices to meet the demanding requirements of anticipated applications for, inter alia, the telecommunications and display industries. These techniques include optimization of diffraction efficiency, i.e., index modulation, polarization dependence control, haze, cosmetic quality, control of response and relaxation time, voltage driving for on and off switching, and material uniformity. This control and independent optimization tailors properties of switchable HPDLC optical devices according to the specific requirements of the application of the switchable HPDLC optical device.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: August 4, 2009
    Assignee: Science Applications International Corporation
    Inventors: Richard L. Sutherland, Stephen A. Siwecki, Vince P. Tondiglia
  • Patent number: 7570322
    Abstract: Described herein are the materials, mechanisms and procedures for optimizing various performance parameters of HPDLC optical devices in order to meet differing performance requirements. These optimization tailoring techniques include control and independent optimization of switchable HPDLC optical devices to meet the demanding requirements of anticipated applications for, inter alia, the telecommunications and display industries. These techniques include optimization of diffraction efficiency, i.e., index modulation, polarization dependence control, haze, cosmetic quality, control of response and relaxation time, voltage driving for on and off switching, and material uniformity. This control and independent optimization tailors properties of switchable HPDLC optical devices according to the specific requirements of the application of the switchable HPDLC optical device.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: August 4, 2009
    Assignee: Science Applications International Corporation
    Inventors: Richard L. Sutherland, Stephen A. Siwecki, Vince P. Tondiglia
  • Patent number: 7420733
    Abstract: A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octancic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: September 2, 2008
    Assignee: Science Applications International Corporation
    Inventors: Lalgudi V. Natarajan, Richard L. Sutherland, Vince P. Tondiglia, Timothy J. Bunning, Bob Epling, Donna M. Brandelik
  • Patent number: 7416818
    Abstract: A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer, in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octanoic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains. Volume transmission gratings made with the new PDLC material can be electrically switched between nearly 100% diffraction efficiency and nearly 0% diffraction efficiency. By increasing the frequency of the switching voltage, switching voltages in the range of 50 Vrms can be achieved.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: August 26, 2008
    Assignee: Science Applications International Corporation
    Inventors: Richard L. Sutherland, Lalquidi V. Natarajan, Vince P. Tondiglia, Timothy J. Bunning
  • Patent number: 7413678
    Abstract: A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octanoic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: August 19, 2008
    Assignee: Science Applications International Corporation
    Inventors: Lalgudi V. Natarajan, Richard L. Sutherland, Vince P. Tondiglia, Timothy J. Bunning
  • Patent number: 7198737
    Abstract: A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. A method for preparing a switchable grating can comprise the steps of placing a mixture between a first and second slide, wherein the mixture has a photopolymerizable monomer, a second phase material, a photoinitiator dye, and a chain extender or cross-linker. The mixture is exposed to a laser and optical intensity pattern is applied to induce photopolymerization. A method for recording slanted reflection gratings can comprise the steps of placing a sample between a first and second glass prism, the sample comprising a polymerizable monomer, a liquid crystal, a chain-extending monomer, a coinitiator, and a photoinitiator. An incident light is split into two beams, wherein the beams enter the sample from opposite sides. The first and second prism are rotated to adjust the slant of the grating.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: April 3, 2007
    Assignee: Science Applications International Corporation
    Inventors: Lalgudi V. Natarajan, Richard L. Sutherland, Vince P. Tondiglia, Timothy J. Bunning, Bob Epling, Donna M. Brandelik
  • Patent number: 7081215
    Abstract: A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octancic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains. Volume transmission gratings made with the new PDLC material can be electrically switched between nearly 100% diffraction efficiency and nearly 0% diffraction efficiency. By increasing the frequency of the switching voltage, switching voltages in the range of 50 Vrms can be achieved.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: July 25, 2006
    Assignee: Science Applications International Corporation
    Inventors: Lalgudi V. Natarajan, Richard L. Sutherland, Vince P. Tondiglia, Timothy J. Bunning, Bob Epling, Donna M. Brandelik
  • Patent number: 7077984
    Abstract: A method for preparing electro-optical polymer-liquid crystal photonic crystals, comprising: disposing between at least two optically transparent electrode plates, a polymer-dispersed liquid crystal material that comprises, before exposure: (a) a polymerizable monomer comprising at least one acrylate; (b) a liquid crystal; (c) a chain-extending monomer; (d) a coinitiator; (e) a photoinitiator; and (f) a long chain aliphatic acid; and exposing this polymer-dispersed liquid crystal material to light in an interference pattern.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: July 18, 2006
    Assignee: Science Applications International Corporation
    Inventors: Lalgudi V. Natarajan, Richard L. Sutherland, Vince P. Tondiglia, Timothy J. Bunning
  • Patent number: 7072020
    Abstract: Described herein are the materials, mechanisms and procedures for optimizing various performance parameters of HPDLC optical devices in order to meet differing performance requirements. These optimization tailoring techniques include control and independent optimization of switchable HPDLC optical devices to meet the demanding requirements of anticipated applications for, inter alia, the telecommunications and display industries. These techniques include optimization of diffraction efficiency, i.e., index modulation, polarization dependence control, haze, cosmetic quality, control of response and relaxation time, voltage driving for on and off switching, and material uniformity. This control and independent optimization tailors properties of switchable HPDLC optical devices according to the specific requirements of the application of the switchable HPDLC optical device.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: July 4, 2006
    Assignee: Science Applications International Corporation
    Inventors: Richard L. Sutherland, Stephen A. Siwecki, Vince P. Tondiglia
  • Patent number: 7018686
    Abstract: A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer, in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octanoic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains. Volume transmission gratings made with the new PDLC material can be electrically switched between nearly 100% diffraction efficiency and nearly 0% diffraction efficiency. By increasing the frequency of the switching voltage, switching voltages in the range of 50 Vrms can be achieved.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: March 28, 2006
    Assignee: Science Applications International Corporation
    Inventors: Richard L. Sutehrland, Lalquidi V. Natarajan, Vince P. Tondiglia, Timothy J. Bunning
  • Patent number: 6950173
    Abstract: Described herein are the materials, mechanisms and procedures for optimizing various performance parameters of HPDLC optical devices in order to meet differing performance requirements. These optimization tailoring techniques include control and independent optimization of switchable HPDLC optical devices to meet the demanding requirements of anticipated applications for, inter alia, the telecommunications and display industries. These techniques include optimization of diffraction efficiency, i.e., index modulation, polarization dependence control, haze, cosmetic quality, control of response and relaxation time, voltage driving for on and off switching, and material uniformity. This control and independent optimization tailors properties of switchable HPDLC optical devices according to the specific requirements of the application of the switchable HPDLC optical device.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: September 27, 2005
    Assignee: Science Applications International Corporation
    Inventors: Richard L. Sutherland, Stephen A. Siwecki, Vince P. Tondiglia
  • Patent number: 6878494
    Abstract: A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer, in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octanoic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains. Volume transmission gratings made with the new PDLC material can be electrically switched between nearly 100% diffraction efficiency and nearly 0% diffraction efficiency. By increasing the frequency of the switching voltage, switching voltages in the range of 50 Vrms can be achieved.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: April 12, 2005
    Assignee: Science Applications International Corporation
    Inventors: Richard L. Sutehrland, Lalquidi V. Natarajan, Vince P. Tondiglia, Timothy J. Bunning
  • Patent number: 6821457
    Abstract: A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octancic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains. Volume transmission gratings made with the new PDLC material can be electrically switched between nearly 100% diffraction efficiency and nearly 0% diffraction efficiency. By increasing the frequency of the switching voltage, switching voltages in the range of 50 Vrms can be achieved.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: November 23, 2004
    Assignee: Science Applications International Corporation
    Inventors: Lalgudi V. Natarajan, Richard L. Sutherland, Vince P. Tondiglia, Timothy J. Bunning, Bob Epling, Donna M. Brandelik
  • Publication number: 20040137204
    Abstract: A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer, in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octanoic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains. Volume transmission gratings made with the new PDLC material can be electrically switched between nearly 100% diffraction efficiency and nearly 0% diffraction efficiency. By increasing the frequency of the switching voltage, switching voltages in the range of 50 Vrms can be achieved.
    Type: Application
    Filed: December 24, 2003
    Publication date: July 15, 2004
    Inventors: Richard L. Sutehrland, Lalquidi V. Natarajan, Vince P. Tondiglia, Timothy J. Bunning
  • Publication number: 20040091787
    Abstract: A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer, in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octanoic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains. Volume transmission gratings made with the new PDLC material can be electrically switched between nearly 100% diffraction efficiency and nearly 0% diffraction efficiency. By increasing the frequency of the switching voltage, switching voltages in the range of 50 Vrms can be achieved.
    Type: Application
    Filed: October 24, 2003
    Publication date: May 13, 2004
    Inventors: Richard L. Sutehrland, Lalquidi V. Natarajan, Vince P. Tondiglia, Timothy J. Bunning
  • Publication number: 20040089842
    Abstract: A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer, in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octanoic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains. Volume transmission gratings made with the new PDLC material can be electrically switched between nearly 100% diffraction efficiency and nearly 0% diffraction efficiency. By increasing the frequency of the switching voltage, switching voltages in the range of 50 Vrms can be achieved.
    Type: Application
    Filed: October 24, 2003
    Publication date: May 13, 2004
    Inventors: Richard L. Sutehrland, Lalquidi V. Natarajan, Vince P. Tondiglia, Timothy J. Bunning