Patents by Inventor Vincent D. MCGAHEE
Vincent D. MCGAHEE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12091620Abstract: A system for processing plastic waste may include a feed line, a feed fractionator, a hydrotreater, a catalytic reforming unit, a heavy oil cracker, and a steam cracker. A pyrolyzed plastics feed is separated into light, medium, and heavy hydrocarbon streams. The hydrotreater removes sulfur, and the catalytic reforming unit produces a circular aromatic-rich stream. The heavy oil cracker generates cracked streams. The steam cracker produces a circular olefin stream from a cracked stream. A system for processing plastic waste may include the feed line, the feed fractionator, the hydrotreater, a medium hydrocarbon fractionator, the catalytic reforming unit, a full-range reforming unit, the heavy oil cracker, and the steam cracker. The medium hydrocarbon fractionator produces two hydrocarbon streams. The full-range naphtha reforming unit produces a second circular aromatic-rich stream.Type: GrantFiled: February 19, 2024Date of Patent: September 17, 2024Assignee: Chevron Phillips Chemical Company LPInventors: Bruce D. Murray, Scott G. Morrison, Kenneth Fountain, Steven R. Horlacher, Vincent D. Mcgahee, Reza Khankal, David Dockter
-
Publication number: 20240191149Abstract: A system for processing plastic waste may include a feed line, a feed fractionator, a hydrotreater, a catalytic reforming unit, a heavy oil cracker, and a steam cracker. A pyrolyzed plastics feed is separated into light, medium, and heavy hydrocarbon streams. The hydrotreater removes sulfur, and the catalytic reforming unit produces a circular aromatic-rich stream. The heavy oil cracker generates cracked streams. The steam cracker produces a circular olefin stream from a cracked stream. A system for processing plastic waste may include the feed line, the feed fractionator, the hydrotreater, a medium hydrocarbon fractionator, the catalytic reforming unit, a full-range reforming unit, the heavy oil cracker, and the steam cracker. The medium hydrocarbon fractionator produces two hydrocarbon streams. The full-range naphtha reforming unit produces a second circular aromatic-rich stream.Type: ApplicationFiled: February 19, 2024Publication date: June 13, 2024Applicant: Chevron Phillips Chemical Company LPInventors: Bruce D. Murray, Scott G. Morrison, Kenneth Fountain, Steven R. Horlacher, Vincent D. Mcgahee, Reza Khankal, David Dockter
-
Patent number: 11939542Abstract: A system for processing plastic waste may include a feed line, a feed fractionator, a hydrotreater, a catalytic reforming unit, a heavy oil cracker, and a steam cracker. A pyrolyzed plastics feed is separated into light, medium, and heavy hydrocarbon streams. The hydrotreater removes sulfur, and the catalytic reforming unit produces a circular aromatic-rich stream. The heavy oil cracker generates cracked streams. The steam cracker produces a circular olefin stream from a cracked stream. A system for processing plastic waste may include the feed line, the feed fractionator, the hydrotreater, a medium hydrocarbon fractionator, the catalytic reforming unit, a full-range reforming unit, the heavy oil cracker, and the steam cracker. The medium hydrocarbon fractionator produces two hydrocarbon streams. The full-range naphtha reforming unit produces a second circular aromatic-rich stream.Type: GrantFiled: September 11, 2023Date of Patent: March 26, 2024Assignee: Chevron Phillips Chemical Company LPInventors: Bruce D. Murray, Scott G. Morrison, Kenneth Fountain, Steven R. Horlacher, Vincent D. Mcgahee, Reza Khankal, David Dockter
-
Patent number: 11932817Abstract: The present disclosure generally relates to systems, methods, and processes for catalytic hydrocarbon reformation.Type: GrantFiled: February 13, 2023Date of Patent: March 19, 2024Assignee: Chevron Phillips Chemical Company LPInventors: Ryan W. Snell, Vincent D. McGahee
-
Publication number: 20230407189Abstract: This disclosure provides processes for reforming hydrocarbons by using a series of adiabatic reactors and catalysts, in which the catalyst(s) in at least one front or upstream catalyst bed or reactor includes a higher fluoride concentration, higher chloride concentration, or both than the respective halide concentrations in the catalysts in one or more downstream catalyst beds or reactors, which has been unexpectedly discovered to extend the useful life and/or the selectivity of the catalyst system.Type: ApplicationFiled: May 23, 2023Publication date: December 21, 2023Applicant: Chevron Phillips Chemical Company LPInventors: Cori A. Demmelmaier-Chang, Joseph Bergmeister, III, Vincent D. McGahee, Gabriela D. Alvez-Manoli
-
Patent number: 11802250Abstract: A system for processing plastic waste may include a feed line, a feed fractionator, a hydrotreater, a catalytic reforming unit, a heavy oil cracker, and a steam cracker. A pyrolyzed plastics feed is separated into light, medium, and heavy hydrocarbon streams. The hydrotreater removes sulfur, and the catalytic reforming unit produces a circular aromatic-rich stream. The heavy oil cracker generates cracked streams. The steam cracker produces a circular olefin stream from a cracked stream. A system for processing plastic waste may include the feed line, the feed fractionator, the hydrotreater, a medium hydrocarbon fractionator, the catalytic reforming unit, a full-range reforming unit, the heavy oil cracker, and the steam cracker. The medium hydrocarbon fractionator produces two hydrocarbon streams. The full-range naphtha reforming unit produces a second circular aromatic-rich stream.Type: GrantFiled: November 10, 2022Date of Patent: October 31, 2023Assignee: Chevron Phillips Chemical Company LPInventors: Bruce D. Murray, Scott G. Morrison, Kenneth Fountain, Steven R. Horlacher, Vincent D. Mcgahee, Reza Khankal, David Dockter
-
Patent number: 11713424Abstract: A process for operating a reforming system by operating a reforming section containing a plurality of reactors, wherein each of the plurality of reactors containing a reforming catalyst capable of catalyzing the conversion of at least a portion of the hydrocarbons in a treated hydrocarbon stream into a reactor effluent comprising aromatic hydrocarbons, and operating a sulfur guard bed (SGB) to remove sulfur and sulfur-containing hydrocarbons from a hydrocarbon feed to provide the treated hydrocarbon stream, where the SGB contains at least a layer of a SGB catalyst comprising the same catalyst as the reforming catalyst, and where each reactor of the plurality of reactors within the reforming section may be operated at a higher operating temperature than an operating temperature of the SGB. A system for carrying out the process is also provided.Type: GrantFiled: February 14, 2018Date of Patent: August 1, 2023Assignee: Chevron Phillips Chemical Company, LPInventors: Ryan W. Snell, Scott G. Morrison, Vincent D. McGahee, Xianghong Hao, Gabriela Alvez-Manoli
-
Patent number: 11643376Abstract: Removal of solids accumulations that are attached to an inlet tube sheet of a heat exchanger in a hydrogenation reactor system by injecting a flush liquid through an injection port on the heat exchanger. Injecting the flush liquid removes portions of the solids accumulations.Type: GrantFiled: August 22, 2022Date of Patent: May 9, 2023Inventors: Israel Garcia, Vincent D. McGahee
-
Patent number: 11634648Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.Type: GrantFiled: September 20, 2022Date of Patent: April 25, 2023Assignee: Chevron Phillips Chemical Company, LPInventors: Vincent D. McGahee, Daniel M. Hasenberg
-
Patent number: 11633707Abstract: A bi-modal radial flow reactor comprising a cylindrical outer housing surrounding at least five cylindrical, concentric zones, including at least three annulus vapor zones and at least two catalyst zones. The at least two catalyst zones comprise an outer catalyst zone and an inner catalyst zone. The at least three annulus vapor zones comprise an outer annulus vapor zone, a middle annulus vapor zone, and a central annulus vapor zone, wherein the central annulus vapor zone extends along a centerline of the bi-modal radial flow reactor. The outer catalyst zone is intercalated with the outer annulus vapor zone and the middle annulus vapor zone, and the inner catalyst zone is intercalated with the middle annulus vapor zone and the central annulus vapor zone. A removable head cover can be fixably coupled to a top of the cylindrical outer housing to seal a top of the bi-modal radial flow reactor.Type: GrantFiled: January 5, 2022Date of Patent: April 25, 2023Assignee: Chevron Phillips Chemical Company, LPInventors: Vincent D. McGahee, Cameron M. Crager, William D. Treleaven
-
Publication number: 20230046694Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.Type: ApplicationFiled: September 20, 2022Publication date: February 16, 2023Inventors: Vincent D. McGahee, Daniel M. Hasenberg
-
Patent number: 11498041Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.Type: GrantFiled: August 10, 2021Date of Patent: November 15, 2022Assignee: Chevron Phillips Chemical Company LPInventors: Vincent D. McGahee, Daniel M. Hasenberg
-
Patent number: 11492558Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.Type: GrantFiled: August 10, 2021Date of Patent: November 8, 2022Assignee: Chevron Phillips Chemical Company, LPInventors: Vincent D. McGahee, Daniel M. Hasenberg
-
Publication number: 20220126248Abstract: A bi-modal radial flow reactor comprising a cylindrical outer housing surrounding at least five cylindrical, concentric zones, including at least three annulus vapor zones and at least two catalyst zones. The at least two catalyst zones comprise an outer catalyst zone and an inner catalyst zone. The at least three annulus vapor zones comprise an outer annulus vapor zone, a middle annulus vapor zone, and a central annulus vapor zone, wherein the central annulus vapor zone extends along a centerline of the bi-modal radial flow reactor. The outer catalyst zone is intercalated with the outer annulus vapor zone and the middle annulus vapor zone, and the inner catalyst zone is intercalated with the middle annulus vapor zone and the central annulus vapor zone. A removable head cover can be fixably coupled to a top of the cylindrical outer housing to seal a top of the bi-modal radial flow reactor.Type: ApplicationFiled: January 5, 2022Publication date: April 28, 2022Inventors: Vincent D. McGahee, Cameron M. Crager, William D. Treleaven
-
Publication number: 20210371759Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.Type: ApplicationFiled: August 10, 2021Publication date: December 2, 2021Inventors: Vincent D. McGahee, Daniel M. Hasenberg
-
Publication number: 20210362115Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.Type: ApplicationFiled: August 10, 2021Publication date: November 25, 2021Inventors: Vincent D. McGahee, Daniel M. Hasenberg
-
Patent number: 11149211Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.Type: GrantFiled: April 28, 2020Date of Patent: October 19, 2021Assignee: Chevron Phillips Chemical Company, LPInventors: Vincent D. McGahee, Daniel M. Hasenberg
-
Patent number: 11103843Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.Type: GrantFiled: January 17, 2020Date of Patent: August 31, 2021Assignee: Chevron Phillips Chemical Company, LPInventors: Vincent D. McGahee, Daniel M. Hasenberg
-
Publication number: 20200255749Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.Type: ApplicationFiled: April 28, 2020Publication date: August 13, 2020Inventors: Vincent D. McGahee, Daniel M. Hasenberg
-
Publication number: 20200147573Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.Type: ApplicationFiled: January 17, 2020Publication date: May 14, 2020Inventors: Vincent D. McGahee, Daniel M. Hasenberg