Patents by Inventor Vincent GRELET

Vincent GRELET has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11136905
    Abstract: A power pack for converting waste heat from exhaust gases of an internal combustion engine to electrical energy includes a working fluid loop fluidly connecting an evaporator, an expander, a condenser and a pump. The power pack also includes a working fluid tank fluidly connected to the working fluid loop between an outlet of the condenser and an inlet of the pump. The working fluid tank has a single working fluid port operable to receive working fluid from the outlet of the condenser and to supply working fluid to the inlet of the pump. The power pack also includes a power pack control unit in communication with the working fluid tank. The power pack control unit is operable to change a pressure of the working fluid in the working fluid loop at the inlet of the pump by changing the pressure of the working fluid in the working fluid tank.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: October 5, 2021
    Assignee: Tenneco GmbH
    Inventor: Vincent Grelet
  • Patent number: 11118482
    Abstract: A power system for converting waste heat from exhaust gases of an internal combustion engine to electrical energy includes an aftertreatment assembly positioned within a first housing. The power system includes an evaporator assembly positioned within a second housing. The evaporator assembly is positioned directly adjacent the aftertreatment assembly. The evaporator assembly includes a first portion of a working fluid loop in thermal communication with a first length of an exhaust conduit that extends from the aftertreatment assembly into the second housing. The power system includes a power pack positioned longitudinally forward of the aftertreatment assembly. The power pack includes a tank, a condenser, a pump and an expander fluidly connected by a second portion of the working fluid loop. The second portion is fluidly connected to the first portion of the working fluid loop.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: September 14, 2021
    Assignee: Tenneco GmbH
    Inventors: Vincent Grelet, Pierre Tipner
  • Patent number: 11092041
    Abstract: A waste heat recovery system in thermal communication with an exhaust conduit of an internal combustion engine of a vehicle includes a condenser. The condenser includes a working fluid conduit configured to connect to a working fluid loop of the waste heat recovery system and a coolant fluid conduit configured to connect to a coolant fluid loop used to cool the internal combustion engine of the vehicle. The coolant fluid conduit includes a coolant fluid inlet and a coolant fluid outlet. The waste heat recovery system also includes a coolant fluid bypass fluidly connected between the coolant fluid inlet and the coolant fluid outlet. The coolant fluid bypass includes a coolant fluid control valve configured to vary a portion of the volume of coolant fluid that flows through the coolant fluid bypass based on a temperature of a working fluid in the working fluid loop.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: August 17, 2021
    Assignee: Tenneco GmbH
    Inventor: Vincent Grelet
  • Publication number: 20200173312
    Abstract: A power system for converting waste heat from exhaust gases of an internal combustion engine to electrical energy includes an aftertreatment assembly positioned within a first housing. The power system includes an evaporator assembly positioned within a second housing. The evaporator assembly is positioned directly adjacent the aftertreatment assembly. The evaporator assembly includes a first portion of a working fluid loop in thermal communication with a first length of an exhaust conduit that extends from the aftertreatment assembly into the second housing. The power system includes a power pack positioned longitudinally forward of the aftertreatment assembly. The power pack includes a tank, a condenser, a pump and an expander fluidly connected by a second portion of the working fluid loop. The second portion is fluidly connected to the first portion of the working fluid loop.
    Type: Application
    Filed: February 7, 2020
    Publication date: June 4, 2020
    Inventors: Vincent GRELET, Pierre TIPNER
  • Patent number: 10570784
    Abstract: A power system for converting waste heat from exhaust gases of an internal combustion engine to electrical energy includes an aftertreatment assembly positioned within a first housing. The power system also includes an evaporator assembly positioned within a second housing. The evaporator assembly is positioned directly adjacent the aftertreatment assembly. The evaporator assembly includes a first portion of a working fluid loop in thermal communication with a first length of an exhaust conduit that extends from the aftertreatment assembly into the second housing. The power system also includes a power pack positioned inside a third housing. The power pack is positioned directly adjacent the evaporator assembly opposite to the aftertreatment assembly. The power pack includes a tank, a condenser, a pump and an expander fluidly connected by a second portion of the working fluid loop. The second portion is fluidly connected to the first portion of the working fluid loop.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: February 25, 2020
    Assignee: Tenneco GmbH
    Inventors: Vincent Grelet, Pierre Tipner
  • Publication number: 20190093520
    Abstract: A power pack for converting waste heat from exhaust gases of an internal combustion engine to electrical energy includes a working fluid loop fluidly connecting an evaporator, an expander, a condenser and a pump. The power pack also includes a working fluid tank fluidly connected to the working fluid loop between an outlet of the condenser and an inlet of the pump. The working fluid tank has a single working fluid port operable to receive working fluid from the outlet of the condenser and to supply working fluid to the inlet of the pump. The power pack also includes a power pack control unit in communication with the working fluid tank. The power pack control unit is operable to change a pressure of the working fluid in the working fluid loop at the inlet of the pump by changing the pressure of the working fluid in the working fluid tank.
    Type: Application
    Filed: May 8, 2018
    Publication date: March 28, 2019
    Inventor: Vincent GRELET
  • Publication number: 20190093519
    Abstract: A waste heat recovery system in thermal communication with an exhaust conduit of an internal combustion engine of a vehicle includes a condenser. The condenser includes a working fluid conduit configured to connect to a working fluid loop of the waste heat recovery system and a coolant fluid conduit configured to connect to a coolant fluid loop used to cool the internal combustion engine of the vehicle. The coolant fluid conduit includes a coolant fluid inlet and a coolant fluid outlet. The waste heat recovery system also includes a coolant fluid bypass fluidly connected between the coolant fluid inlet and the coolant fluid outlet. The coolant fluid bypass includes a coolant fluid control valve configured to vary a portion of the volume of coolant fluid that flows through the coolant fluid bypass based on a temperature of a working fluid in the working fluid loop.
    Type: Application
    Filed: May 8, 2018
    Publication date: March 28, 2019
    Inventor: Vincent GRELET
  • Publication number: 20190093537
    Abstract: A power system for converting waste heat from exhaust gases of an internal combustion engine to electrical energy includes an aftertreatment assembly positioned within a first housing. The power system also includes an evaporator assembly positioned within a second housing. The evaporator assembly is positioned directly adjacent the aftertreatment assembly. The evaporator assembly includes a first portion of a working fluid loop in thermal communication with a first length of an exhaust conduit that extends from the aftertreatment assembly into the second housing. The power system also includes a power pack positioned inside a third housing. The power pack is positioned directly adjacent the evaporator assembly opposite to the aftertreatment assembly. The power pack includes a tank, a condenser, a pump and an expander fluidly connected by a second portion of the working fluid loop. The second portion is fluidly connected to the first portion of the working fluid loop.
    Type: Application
    Filed: May 8, 2018
    Publication date: March 28, 2019
    Inventors: Vincent GRELET, Pierre TIPNER
  • Patent number: 9657603
    Abstract: A waste heat recovery system carrying a working fluid in a loop includes an expander, a condenser and a pump, a first and a second line arranged in parallel in the high pressure circuit portion upstream of the expander and joining at a downstream junction point in the high pressure circuit portion. The first line includes a first heat exchanger connected to the exhaust line, and the second line includes a second heat exchanger connected to a line carrying a warm fluid. A first by-pass system prevents not fully evaporated working fluid from the first line to flow through the expander. A second by-pass system connects the second line to the low pressure circuit portion for by-passing the downstream junction point and the expander.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: May 23, 2017
    Assignee: Volvo Truck Corporation
    Inventor: Vincent Grelet
  • Publication number: 20160130981
    Abstract: A waste heat recovery system carrying a working fluid in a loop includes an expander, a condenser and a pump, a first and a second line arranged in parallel in the high pressure circuit portion upstream of the expander and joining at a downstream junction point in the high pressure circuit portion. The first line includes a first heat exchanger connected to the exhaust line, and the second line includes a second heat exchanger connected to a line carrying a warm fluid. A first by-pass system prevents not fully evaporated working fluid from the first line to flow through the expander. A second by-pass system connects the second line to the low pressure circuit portion for by-passing the downstream junction point and the expander.
    Type: Application
    Filed: July 15, 2013
    Publication date: May 12, 2016
    Applicant: VOLVO TRUCK CORPORATION
    Inventor: Vincent GRELET