Patents by Inventor Vincent Hietala

Vincent Hietala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070222654
    Abstract: Data throughput rates are increased in an optical fiber communication system without requiring replacement of the existing optical fiber in a link. Channel throughput is increased by upgrading the components and circuitry in the head and terminal of an optical fiber communication system link. Aggregate throughput in a fiber optic link is increased beyond the range of conventional Wavelength Division Multiplexed (WDM) upgrades, while precluding the necessity of replacing existing fiber plants. The increase in system throughput is achieved by using advanced modulation techniques to encode greater amounts of data into the transmitted spectrum of a channel, thereby increasing the spectral efficiency of each channel. This novel method of increasing transmission capacity by upgrading the head and terminal of the system to achieve greater spectral efficiency and hence throughput, alleviates the need to replace existing fiber plants.
    Type: Application
    Filed: November 15, 2006
    Publication date: September 27, 2007
    Applicant: Quellan, Inc.
    Inventors: Michael Vrazel, Stephen Ralph, Joy Laskar, Sungyong Jung, Vincent Hietala, Edward Gebara
  • Publication number: 20070171998
    Abstract: A multilevel optical receiver can comprise a plurality of comparators that generally correspond with the number of levels in a multilevel data stream. Each comparator can be individually controlled and fed a decision threshold in order to decode a multilevel signal. The multilevel optical receiver can generate a statistical characterization of the received symbols in the form of a marginal cumulative distribution function (CDF) or probability density function (pdf). This characterization can be used to produce a set of ?-support estimates from which conditional pdfs are derived for each of the transmission symbols. These conditional pdfs may then be used to determine decision thresholds for decoding the received signal. The conditional pdfs may further be used to continuously estimate the fidelity or error rate of the received signal without the transmission of a testing sequence. The ?-supports may further be used to automatically control the gain on the receiver.
    Type: Application
    Filed: December 4, 2006
    Publication date: July 26, 2007
    Applicant: Quellan, Inc.
    Inventors: Vincent Hietala, Andrew Kim
  • Publication number: 20070092265
    Abstract: Decreasing the average transmitted power in an optical fiber communication channel using multilevel amplitude modulation in conjunction with Pulse Position Modulation (PPM). This multilevel PPM method does not entail any tradeoff between decreased power per channel and channel bandwidth, enabling a lower average transmitted power compared to On/Off Keying (OOK) with no reduction in aggregate data rate. Therefore, multilevel PPM can be used in high-speed Dense Wavelength Division Multiplexed (DWDM) systems where the maximum number of channels is traditionally limited by nonlinear effects such as self-phase modulation (SPM), cross-phase modulation (XPM), four-wave mixing (FWM), stimulated Brillouin scattering (SBS), and stimulated Raman scattering (SRS). This modulation technique can enable an increased number of channels in DWDM systems, thereby increasing aggregate data rates within those systems.
    Type: Application
    Filed: October 5, 2006
    Publication date: April 26, 2007
    Applicant: Quellan, Inc.
    Inventors: Michael Vrazel, Stephen Ralph, Vincent Hietala
  • Publication number: 20060239390
    Abstract: A Signal Conditioning Filter (SCF) and a Signal Integrity Unit (SIU) address the coupled problem of equalization and noise filtering in order to improve signal fidelity for decoding. Specifically, a received signal can be filtered in a manner to optimize the signal fidelity even in the presence of both significant (large magnitudes of) ISI and noise. The present invention can provide an adaptive method that continuously monitors a signal fidelity measure. Monitoring the fidelity of a multilevel signal can be performed by external means such as by the SIU. A received signal y(t) can be “conditioned” by application of a filter with an electronically adjustable impulse response g(t). A resulting output z(t) can then be interrogated to characterize the quality of the conditioned signal. This fidelity measure q(t) can be used to adjust the filter response to maximize the fidelity measure of the conditioned signal.
    Type: Application
    Filed: February 21, 2006
    Publication date: October 26, 2006
    Applicant: Quellan, Inc.
    Inventors: Andrew Kim, Vincent Hietala, Sanjay Bajekal