Patents by Inventor Vincent J. J. Martin

Vincent J. J. Martin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10457918
    Abstract: The present disclosure provides a variant tyrosine hydroxylase that provides for increased production of L-DOPA in a host cell that expresses the tyrosine hydroxylase. The present disclosure provides nucleic acids encoding the variant tyrosine hydroxylase, and host cells genetically modified with the nucleic acids. The present disclosure provides methods of making L-DOPA in a host cell. The present disclosure provides methods of making a benzylisoquinoline alkaloid (BIA), or a BIA precursor. The present disclosure provides methods of detecting L-DOPA level in a cell. The present disclosure provides methods of identifying tyrosine hydroxylase variants that provide for increased L-DOPA production; and methods of identifying gene products that provide for increased tyrosine production.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: October 29, 2019
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, VALORBEC S.E.C.
    Inventors: Vincent J. J. Martin, Lauren Narcross, John E. Dueber, William C. DeLoache, Zachary N. Russ, P. James Scrivens
  • Publication number: 20170306301
    Abstract: The present disclosure provides a variant tyrosine hydroxylase that provides for increased production of L-DOPA in a host cell that expresses the tyrosine hydroxylase. The present disclosure provides nucleic acids encoding the variant tyrosine hydroxylase, and host cells genetically modified with the nucleic acids. The present disclosure provides methods of making L-DOPA in a host cell. The present disclosure provides methods of making a benzylisoquinoline alkaloid (BIA), or a BIA precursor. The present disclosure provides methods of detecting L-DOPA level in a cell. The present disclosure provides methods of identifying tyrosine hydroxylase variants that provide for increased L-DOPA production; and methods of identifying gene products that provide for increased tyrosine production.
    Type: Application
    Filed: September 24, 2015
    Publication date: October 26, 2017
    Applicant: The Regents of the University of California
    Inventors: Vincent J. J. Martin, Lauren Narcross, John E. Dueber, William C. DeLoache, Zachary N. Russ, P. James Scrivens
  • Patent number: 8288147
    Abstract: Methods for synthesizing isopentenyl pyrophosphate are provided. A first method comprises introducing into a host microorganism a plurality of heterologous nucleic acid sequences, each coding for a different enzyme in the mevalonate pathway for producing isopentenyl pyrophosphate. A related method comprises introducing into a host microorganism an intermediate in the mevalonate pathway and at least one heterologous nucleic acid sequence, each sequence coding for an enzyme in the mevalonate pathway necessary for converting the intermediate into isopentenyl pyrophosphate. The invention also provides nucleic acid sequences, enzymes, expression vectors, and transformed host cells for carrying out the methods.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: October 16, 2012
    Assignee: The Regents of the University of California
    Inventors: Jay D. Keasling, Vincent J.J. Martin, Douglas J. Pitera, Seon-Won Kim, Sydnor T. Withers, III, Yasuo Yoshikuni, Jack Newman, Artem Valentinovich Khlebnikov
  • Patent number: 7927794
    Abstract: The present invention provides isolated, genetically modified host cells, where a host cell is genetically modified with a nucleic acid that includes a nucleotide sequence encoding a biosynthetic pathway enzyme. Synthesis of the enzyme in the host cell results in conversion of a substrate for the enzyme into a biosynthetic pathway intermediate, which intermediate is produced in an amount effective to inhibit growth of the genetically modified host cell. The present invention further provides compositions and kits comprising a subject genetically modified host cell. Subject host cells are useful for identifying a gene product having activity in a biosynthetic pathway. The present invention further provides methods of identifying a gene product having activity in a biosynthetic pathway.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: April 19, 2011
    Assignee: The Regents of the University of California
    Inventors: Jay D. Keasling, Jack D. Newman, Douglas J. Pitera, Sydnor T. Withers, III, Keith Kinkead Reiling, Vincent J. J. Martin
  • Patent number: 7915026
    Abstract: Methods for synthesizing isopentenyl pyrophosphate are provided. A first method comprises introducing into a host microorganism a plurality of heterologous nucleic acid sequences, each coding for a different enzyme in the mevalonate pathway for producing isopentenyl pyrophosphate. A related method comprises introducing into a host microorganism an intermediate in the mevalonate pathway and at least one heterologous nucleic acid sequence, each sequence coding for an enzyme in the mevalonate pathway necessary for converting the intermediate into isopentenyl pyrophosphate. The invention also provides nucleic acid sequences, enzymes, expression vectors, and transformed host cells for carrying out the methods.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: March 29, 2011
    Assignee: The Regents of the University of California
    Inventors: Jay D. Keasling, Vincent J. J. Martin, Douglas J. Pitera, Seon-Won Kim, Sydnor T. Withers, III, Yasuo Yoshikuni, Jack Newman, Artem Valentinovich Khlebnikov
  • Patent number: 7745108
    Abstract: The present invention provides a method of identifying an enzyme, the method generally involving contacting a sample containing an enzyme with a selected enzyme substrate, where the contacting provides for covalent binding of the substrate to an amino acid of the enzyme to form a covalently modified enzyme; and determining the amino acid sequence of at least a portion of the covalently modified enzyme, using any available peptide sequencing technology, such as tandem mass spectrometry. The present invention further provides methods of identifying a nucleic acid encoding an enzyme, the methods generally involving identifying an enzyme; and, based on the amino acid sequence of at least a portion of the enzyme, designing nucleic acid probes or primers that hybridize to the nucleic acid encoding the enzyme.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: June 29, 2010
    Assignee: The Regents of the University of California
    Inventors: Jack D. Newman, Neil Renninger, Vincent J. J. Martin, Jay D. Keasling, Keith Kinkead Reiling
  • Patent number: 7736882
    Abstract: Methods for synthesizing isopentenyl pyrophosphate are provided. A first method comprises introducing into a host microorganism a plurality of heterologous nucleic acid sequences, each coding for a different enzyme in the mevalonate pathway for producing isopentenyl pyrophosphate. A related method comprises introducing into a host microorganism an intermediate in the mevalonate pathway and at least one heterologous nucleic acid sequence, each sequence coding for an enzyme in the mevalonate pathway necessary for converting the intermediate into isopentenyl pyrophosphate. The invention also provides nucleic acid sequences, enzymes, expression vectors, and transformed host cells for carrying out the methods.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: June 15, 2010
    Assignee: The Regents of the University of California
    Inventors: Jay D. Keasling, Vincent J. J. Martin, Douglas J. Pitera, Seon-Won Kim, Sydnor T. Withers, III, Yasuo Yoshikuni, Jack Newman, Artem Valentinovich Khlebnikov
  • Patent number: 7667017
    Abstract: Methods for synthesizing isopentenyl pyrophosphate are provided. A first method comprises introducing into a host microorganism a plurality of heterologous nucleic acid sequences, each coding for a different enzyme in the mevalonate pathway for producing isopentenyl pyrophosphate. A related method comprises introducing into a host microorganism an intermediate in the mevalonate pathway and at least one heterologous nucleic acid sequence, each sequence coding for an enzyme in the mevalonate pathway necessary for converting the intermediate into isopentenyl pyrophosphate. The invention also provides nucleic acid sequences, enzymes, expression vectors, and transformed host cells for carrying out the methods.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: February 23, 2010
    Assignee: The Regents of the University of California
    Inventors: Jay D. Keasling, Vincent J. J. Martin, Douglas J. Pitera, Seon-Won Kim, Sydnor T. Withers, III, Yasuo Yoshikuni, Jack D. Newman, Artem Valentinovich Khlebnikov
  • Patent number: 7622282
    Abstract: Methods for synthesizing isopentenyl pyrophosphate are provided. A first method comprises introducing into a host microorganism a plurality of heterologous nucleic acid sequences, each coding for a different enzyme in the mevalonate pathway for producing isopentenyl pyrophosphate. A related method comprises introducing into a host microorganism an intermediate in the mevalonate pathway and at least one heterologous nucleic acid sequence, each sequence coding for an enzyme in the mevalonate pathway necessary for converting the intermediate into isopentenyl pyrophosphate. The invention also provides nucleic acid sequences, enzymes, expression vectors, and transformed host cells for carrying out the methods.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: November 24, 2009
    Assignee: The Regents of the University of California
    Inventors: Jay D. Keasling, Vincent J. J. Martin, Douglas J. Pitera, Seon-Won Kim, Sydnor T. Withers, III, Yasuo Yoshikuni, Jack Newman, Artem Valentinovich Khlebnikov