Patents by Inventor Vincent Venezia

Vincent Venezia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8921187
    Abstract: Embodiments of a process including depositing a sacrificial layer on the surface of a substrate over a photosensitive region, over the top surface of a transfer gate, and over at least the sidewall of the transfer gate closest to the photosensitive region, the sacrificial layer having a selected thickness. A layer of photoresist is deposited over the sacrificial layer, which is patterned and etched to expose the surface of the substrate over the photosensitive region and at least part of the transfer gate top surface, leaving a sacrificial spacer on the sidewall of the transfer gate closest to the photosensitive region. The substrate is plasma doped to form a pinning layer between the photosensitive region and the surface of the substrate. The spacing between the pinning layer and the sidewall of the transfer gate substantially corresponds to a thickness of the sacrificial spacer. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: December 30, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Duli Mao, Hsin-Chih Tai, Vincent Venezia, Yin Qian, Howard E. Rhodes
  • Publication number: 20140327102
    Abstract: An image sensor pixel includes a photodiode region having a first polarity doping type disposed in a semiconductor layer. A pinning surface layer having a second polarity doping type is disposed over the photodiode region in the semiconductor layer. A first polarity charge layer is disposed proximate to the pinning surface layer over the photodiode region. A contact etch stop layer is disposed over the photodiode region proximate to the first polarity charge layer. The first polarity charge layer is disposed between the pinning surface layer and the contact etch stop layer such that first polarity charge layer cancels out charge having a second polarity that is induced in the contact etch stop layer. The first polarity charge layer is disposed between a first one of a plurality of passivation layers and a second one of the plurality of passivation layers disposed over the photodiode region.
    Type: Application
    Filed: July 15, 2014
    Publication date: November 6, 2014
    Inventors: Howard E. Rhodes, Dajiang Yang, Gang Chen, Duli Mao, Vincent Venezia
  • Publication number: 20140319639
    Abstract: An image sensor pixel includes a photodiode region having a first polarity doping type disposed in a semiconductor layer. A pinning surface layer having a second polarity doping type is disposed over the photodiode region in the semiconductor layer. The second polarity is opposite from the first polarity. A first polarity charge layer is disposed proximate to the pinning surface layer over the photodiode region. A contact etch stop layer is disposed over the photodiode region proximate to the first polarity charge layer. The first polarity charge layer is disposed between the pinning surface layer and the contact etch stop layer such that first polarity charge layer cancels out charge having a second polarity that is induced in the contact etch stop layer. A passivation layer is also disposed over the photodiode region between the pinning surface layer and the first polarity charge layer.
    Type: Application
    Filed: July 15, 2014
    Publication date: October 30, 2014
    Inventors: Howard E. Rhodes, Dajiang Yang, Gang Chen, Duli Mao, Vincent Venezia
  • Publication number: 20140312447
    Abstract: A backside illuminated image sensor includes a semiconductor layer and a trench disposed in the semiconductor layer. The semiconductor layer has a frontside surface and a backside surface. The semiconductor layer includes a light sensing element of a pixel array disposed in a sensor array region of the semiconductor layer. The pixel array is positioned to receive external incoming light through the backside surface of the semiconductor layer. The semiconductor layer also includes a light emitting element disposed in a periphery circuit region of the semiconductor layer external to the sensor array region. The trench is disposed in the semiconductor layer between the light sensing element and the light emitting element.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Inventors: Duli Mao, Dyson H. Tai, Vincent Venezia, Yin Qian, Gang Chen, Howard E. Rhodes
  • Patent number: 8859352
    Abstract: Embodiments of the present invention are directed to an image sensor having pixel transistors and peripheral transistors disposed in a silicon substrate. For some embodiments, a protective coating is disposed on the peripheral transistors and doped silicon is epitaxially grown on the substrate to form lightly-doped drain (LDD) areas for the pixel transistors. The protective oxide may be used to prevent epitaxial growth of silicon on the peripheral transistors during formation of the LDD areas of the pixel transistors.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: October 14, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Duli Mao, Hsin-Chih Tai, Howard E. Rhodes, Vincent Venezia, Yin Qian
  • Publication number: 20140299956
    Abstract: An imaging device includes a semiconductor substrate having a photosensitive element for accumulating charge in response to incident image light. The semiconductor substrate includes a light-receiving surface positioned to receive the image light. The imaging device also includes a negative charge layer and a charge sinking layer. The negative charge layer is disposed proximate to the light-receiving surface of the semiconductor substrate to induce holes in an accumulation zone in the semiconductor substrate along the light-receiving surface. The charge sinking layer is disposed proximate to the negative charge layer and is configured to conserve or increase an amount of negative charge in the negative charge layer. The negative charge layer is disposed between the semiconductor substrate and the charge sinking layer.
    Type: Application
    Filed: April 4, 2013
    Publication date: October 9, 2014
    Applicant: OmniVision Technologies, Inc.
    Inventors: Chih-Wei Hsiung, Oray Orkun Cellek, Gang Chen, Duli Mao, Vincent Venezia, Hsin-Chih Tai
  • Publication number: 20140239351
    Abstract: Embodiments of a process including depositing a sacrificial layer on the surface of a substrate over a photosensitive region, over the top surface of a transfer gate, and over at least the sidewall of the transfer gate closest to the photosensitive region, the sacrificial layer having a selected thickness. A layer of photoresist is deposited over the sacrificial layer, which is patterned and etched to expose the surface of the substrate over the photosensitive region and at least part of the transfer gate top surface, leaving a sacrificial spacer on the sidewall of the transfer gate closest to the photosensitive region. The substrate is plasma doped to form a pinning layer between the photosensitive region and the surface of the substrate. The spacing between the pinning layer and the sidewall of the transfer gate substantially corresponds to a thickness of the sacrificial spacer. Other embodiments are disclosed and claimed.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Gang Chen, Duli Mao, Hsin-Chih Tai, Vincent Venezia, Yin Qian, Howard E. Rhodes
  • Patent number: 8817142
    Abstract: A color image sensor includes a pixel array including CFA overlaying an array of photo-sensors for acquiring color image data. The CFA includes first color filter elements of a first color overlaying a first group of the photo-sensors and second color filter elements of a second color overlaying a second group of the photo-sensors. The first group of photo-sensors generate first color signals of a first color channel and the second group of photo-sensors generate second color signals of a second color channel. The color image sensor further includes a color signal combiner circuit (“CSCC”) coupled to receive the first and second color signals output from the pixel array. The CSCC includes a combiner coupled to combine the first and second colors signals to generate third color signals of a third color channel. An output port is coupled to the CSCC to output the color image data.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: August 26, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Hsin-Chih Tai, Yin Qian, Duli Mao, Vincent Venezia
  • Patent number: 8816462
    Abstract: An image sensor pixel includes a photodiode region having a first polarity doping type disposed in a semiconductor layer. A pinning surface layer having a second polarity doping type is disposed over the photodiode region in the semiconductor layer. The second polarity is opposite from the first polarity. A first polarity charge layer is disposed proximate to the pinning surface layer over the photodiode region. An contact etch stop layer is disposed over the photodiode region proximate to the first polarity charge layer. The first polarity charge layer is disposed between the pinning surface layer and the contact etch stop layer such that first polarity charge layer cancels out charge having a second polarity that is induced in the contact etch stop layer. A passivation layer is also disposed over the photodiode region between the pinning surface layer and the contact etch stop layer.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: August 26, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Howard E. Rhodes, Dajiang Yang, Gang Chen, Duli Mao, Vincent Venezia
  • Publication number: 20140231622
    Abstract: Techniques and mechanisms for a pixel array to provide a level of conversion gain. In an embodiment, the pixel array includes conversion gain control circuitry to be selectively configured at different times for different operational modes, each mode for implementing a respective conversion gain. The conversion gain control circuitry selectively provides switched coupling of the pixel cell to—and/or switched decoupling of the pixel cell from—a supply voltage. In another embodiment, the conversion gain control circuitry selectively provides switched coupling of the pixel cell to—and/or switched decoupling of the pixel cell from—sample and hold circuitry.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 21, 2014
    Inventors: Duli Mao, Vincent Venezia, Gang Chen, Hsin-Chih Tai, Howard Rhodes
  • Patent number: 8809923
    Abstract: A backside illuminated imaging sensor includes a semiconductor substrate having a front surface and a back surface. The semiconductor substrate has at least one imaging array formed on the front surface. The imaging sensor also includes a carrier substrate to provide structural support to the semiconductor substrate, where the carrier substrate has a first surface coupled to the front surface of the semiconductor substrate. A re-distribution layer is formed between the front surface of the semiconductor substrate and the second surface of the carrier substrate to route electrical signals between the imaging array and a second surface of the carrier substrate.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: August 19, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Hsin-Chih Tai, Howard E. Rhodes, Duli Mao, Vincent Venezia, Yin Qian
  • Patent number: 8804021
    Abstract: Techniques and mechanisms for improving full well capacity for pixel structures in an image sensor. In an embodiment, a first pixel structure of the image sensor includes an implant region, where a skew of the implant region corresponds to an implant angle, and a second pixel structure of the image sensor includes a transfer gate. In another embodiment, an offset of the implant region of the first pixel structure from the transfer gate of the second pixel structure corresponds to the implant angle.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: August 12, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Sohei Manabe, Keh-Chiang Ku, Vincent Venezia, Hsin-Chih Tai, Duli Mao, Howard E. Rhodes
  • Patent number: 8772898
    Abstract: A backside illuminated image sensor includes a semiconductor layer and a trench disposed in the semiconductor layer. The semiconductor layer has a frontside surface and a backside surface. The semiconductor layer includes a light sensing element of a pixel array disposed in a sensor array region of the semiconductor layer. The pixel array is positioned to receive external incoming light through the backside surface of the semiconductor layer. The semiconductor layer also includes a light emitting element disposed in a periphery circuit region of the semiconductor layer external to the sensor array region. The trench is disposed in the semiconductor layer between the light sensing element and the light emitting element. The trench is positioned to impede a light path between the light emitting element and the light sensing element when the light path is internal to the semiconductor layer.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: July 8, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Duli Mao, Hsin-Chih Tai, Vincent Venezia, Yin Qian, Gang Chen, Howard E. Rhodes
  • Patent number: 8759934
    Abstract: An image sensor includes a photosensitive region disposed within a semiconductor layer and a stress adjusting layer. The photosensitive region is sensitive to light incident through a first side of the image sensor to collect an image charge. The stress adjusting layer is disposed over the first side of the semiconductor layer to establish a stress characteristic that encourages photo-generated charge carriers to migrate towards the photosensitive region.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: June 24, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Hsin-Chih Tai, Howard E. Rhodes, Wei Zheng, Vincent Venezia, Yin Qian, Duli Mao
  • Patent number: 8729712
    Abstract: Embodiments of a semiconductor device that includes a semiconductor substrate and a cavity disposed in the semiconductor substrate that extends at least from a first side of the semiconductor substrate to a second side of the semiconductor substrate. The semiconductor device also includes an insulation layer disposed over the first side of the semiconductor substrate and coating sidewalls of the cavity. A conductive layer including a bonding pad is disposed over the insulation layer. The conductive layer extends into the cavity and connects to a metal stack disposed below the second side of the semiconductor substrate. A through silicon via pad is disposed below the second side of the semiconductor substrate and connected to the metal stack. The through silicon via pad is position to accept a through silicon via.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: May 20, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yin Qian, Dyson H. Tai, Keh-Chiang Ku, Vincent Venezia, Duli Mao, Wei Zheng, Howard E. Rhodes
  • Publication number: 20140117485
    Abstract: An image sensor pixel includes a photodiode region having a first polarity doping type disposed in a semiconductor layer. A pinning surface layer having a second polarity doping type is disposed over the photodiode region in the semiconductor layer. The second polarity is opposite from the first polarity. A first polarity charge layer is disposed proximate to the pinning surface layer over the photodiode region. An contact etch stop layer is disposed over the photodiode region proximate to the first polarity charge layer. The first polarity charge layer is disposed between the pinning surface layer and the contact etch stop layer such that first polarity charge layer cancels out charge having a second polarity that is induced in the contact etch stop layer. A passivation layer is also disposed over the photodiode region between the pinning surface layer and the contact etch stop layer.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 1, 2014
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Howard E. Rhodes, Dajiang Yang, Gang Chen, Duli Mao, Vincent Venezia
  • Patent number: 8670052
    Abstract: A color image sensor includes a pixel array including a CFA overlaying an array of photo-sensors for acquiring a color image. The CFA includes first color filter elements of a first color overlaying a first group of the photo-sensors, second color filter elements of a second color overlaying a second group of the photo-sensors, and a plurality of filter stacks overlaying a third group of the photo-sensors. The first group generates first color signals of a first color channel and the second group generates second color signals of a second color channel. Each of the filter stacks includes a first stacked filter of the first color and a second stacked filter of the second color. A sensitivity of the filter stacks equals a product of sensitivities of the first and the second stacked filters and the filter stacks generate a third color channel.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: March 11, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Hsin-Chih Tai, Yin Qian, Duli Mao, Vincent Venezia
  • Patent number: 8658956
    Abstract: An image sensor provides high scalability and reduced image lag. The sensor includes a first imaging pixel that has a first photodiode region formed in a substrate of the image sensor. The sensor also includes a first vertical transfer transistor coupled to the first photodiode region. The first vertical transfer transistor can be used to establish an active channel. The active channel typically extends along the length of the first vertical transfer transistor and couples the first photodiode region to a floating diffusion.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: February 25, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Vincent Venezia, Hsin-Chih Tai, Duli Mao, Howard E. Rhodes
  • Publication number: 20140048897
    Abstract: Embodiments of a pixel including a substrate having a front surface and a photosensitive region formed in or near the front surface of the substrate. An isolation trench is formed in the front surface of the substrate adjacent to the photosensitive region. The isolation trench includes a trench having a bottom and sidewalls, a passivation layer formed on the bottom and the sidewalls, and a filler to fill the portion of the trench not filled by the passivation layer.
    Type: Application
    Filed: August 16, 2012
    Publication date: February 20, 2014
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Yin Qian, Hsin-Chih Tai, Gang Chen, Duli Mao, Vincent Venezia, Howard E. Rhodes
  • Publication number: 20140035089
    Abstract: Embodiments of a semiconductor device that includes a semiconductor substrate and a cavity disposed in the semiconductor substrate that extends at least from a first side of the semiconductor substrate to a second side of the semiconductor substrate. The semiconductor device also includes an insulation layer disposed over the first side of the semiconductor substrate and coating sidewalls of the cavity. A conductive layer including a bonding pad is disposed over the insulation layer. The conductive layer extends into the cavity and connects to a metal stack disposed below the second side of the semiconductor substrate. A through silicon via pad is disposed below the second side of the semiconductor substrate and connected to the metal stack. The through silicon via pad is position to accept a through silicon via.
    Type: Application
    Filed: October 14, 2013
    Publication date: February 6, 2014
    Applicant: OmniVision Technologies, Inc.
    Inventors: Yin Qian, Dyson H. Tai, Keh-Chiang Ku, Vincent Venezia, Duli Mao, Wei Zheng, Howard E. Rhodes