Patents by Inventor Vincent W. S. Chan

Vincent W. S. Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11101893
    Abstract: A pseudo-random cipher stream is used to band-spread an optical carrier signal with coded data. A legitimate receiver uses an agreed-upon key to modulate its local oscillator and a resulting beat signal uncovers the band-spread signal. An eavesdropper who does not have the key finds the spread signal with too low signal-to-noise ratio to perform any useful determination of the message sequence. Theoretical bounds based on Shannon's Theory of Secrecy are used to show strength of the encoding scheme and predict it to be superior to the prior art.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: August 24, 2021
    Assignee: Massachusetts Institute of Technology
    Inventor: Vincent W. S. Chan
  • Patent number: 11075830
    Abstract: Systems and methods reduce delivery delay jitter in a delivery network. A processor identifies a plurality of routes between an originating node and a destination node. Each route has a respective mean delivery delay time and a respective delivery delay jitter. The processor solves a convex optimization problem for a plurality of values of delivery delay, thereby yielding a plurality of solutions. Each solution represents a corresponding allocation of traffic among the plurality of routes. Each allocation of traffic has a corresponding mean delivery delay time and a corresponding mean delivery delay jitter. The processor selects, from the plurality of solutions, a selected solution, which has a mean delivery delay jitter less than the delivery delay jitter of any route of the plurality of routes. Traffic is automatically distributed over the plurality of routes according to the allocation of traffic that corresponds to the selected solution.
    Type: Grant
    Filed: October 12, 2019
    Date of Patent: July 27, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Vincent W. S. Chan, Arman Rezaee
  • Publication number: 20200120006
    Abstract: Systems and methods reduce delivery delay jitter in a delivery network. A processor identifies a plurality of routes between an originating node and a destination node. Each route has a respective mean delivery delay time and a respective delivery delay jitter. The processor solves a convex optimization problem for a plurality of values of delivery delay, thereby yielding a plurality of solutions. Each solution represents a corresponding allocation of traffic among the plurality of routes. Each allocation of traffic has a corresponding mean delivery delay time and a corresponding mean delivery delay jitter. The processor selects, from the plurality of solutions, a selected solution, which has a mean delivery delay jitter less than the delivery delay jitter of any route of the plurality of routes. Traffic is automatically distributed over the plurality of routes according to the allocation of traffic that corresponds to the selected solution.
    Type: Application
    Filed: October 12, 2019
    Publication date: April 16, 2020
    Inventors: Vincent W.S. Chan, Arman Rezaee
  • Patent number: 10256939
    Abstract: A single-wavelength light path is selected between a source access node and a destination access node of a wavelength-division multiplexed optical network, including selecting an illuminated wavelength of the light path and selecting a start time and duration for a data transfer that would not interfere with other data transfers. If no start time/wavelength combination is available with duration sufficient to transport the data, an additional wavelength is automatically selected, based on modeling, that would not impair traffic being carried by other wavelengths in the network, and without a time-consuming manual process of the prior art. The scheduling process may include selecting a set of optical fibers, a wavelength, a start time and an end time to transport proposed traffic. A novel scheduler avoids checking every possible start time, thereby saving significant processing time. The scheduler schedules single-wavelength light paths, rather than relying on complex wavelength shifting schemes.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: April 9, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Lei Zhang, Vincent W. S. Chan
  • Publication number: 20180367236
    Abstract: A single-wavelength light path is selected between a source access node and a destination access node of a wavelength-division multiplexed optical network, including selecting an illuminated wavelength of the light path and selecting a start time and duration for a data transfer that would not interfere with other data transfers. If no start time/wavelength combination is available with duration sufficient to transport the data, an additional wavelength is automatically selected, based on modeling, that would not impair traffic being carried by other wavelengths in the network, and without a time-consuming manual process of the prior art. The scheduling process may include selecting a set of optical fibers, a wavelength, a start time and an end time to transport proposed traffic. A novel scheduler avoids checking every possible start time, thereby saving significant processing time. The scheduler schedules single-wavelength light paths, rather than relying on complex wavelength shifting schemes.
    Type: Application
    Filed: July 30, 2018
    Publication date: December 20, 2018
    Inventors: Lei Zhang, Vincent W.S. Chan
  • Patent number: 10050740
    Abstract: A single-wavelength light path is selected between a source access node and a destination access node of a wavelength-division multiplexed optical network, including selecting an illuminated wavelength of the light path and selecting a start time and duration for a data transfer that would not interfere with other data transfers. If no start time/wavelength combination is available with duration sufficient to transport the data, an additional wavelength is automatically selected, based on modeling, that would not impair traffic being carried by other wavelengths in the network, and without a time-consuming manual process of the prior art. The scheduling process may include selecting a set of optical fibers, a wavelength, a start time and an end time to transport proposed traffic. A novel scheduler avoids checking every possible start time, thereby saving significant processing time. The scheduler schedules single-wavelength light paths, rather than relying on complex wavelength shifting schemes.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: August 14, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Lei Zhang, Vincent W. S. Chan
  • Publication number: 20180123724
    Abstract: A single-wavelength light path is selected between a source access node and a destination access node of a wavelength-division multiplexed optical network, including selecting an illuminated wavelength of the light path and selecting a start time and duration for a data transfer that would not interfere with other data transfers. If no start time/wavelength combination is available with duration sufficient to transport the data, an additional wavelength is automatically selected, based on modeling, that would not impair traffic being carried by other wavelengths in the network, and without a time-consuming manual process of the prior art. The scheduling process may include selecting a set of optical fibers, a wavelength, a start time and an end time to transport proposed traffic. A novel scheduler avoids checking every possible start time, thereby saving significant processing time. The scheduler schedules single-wavelength light paths, rather than relying on complex wavelength shifting schemes.
    Type: Application
    Filed: June 2, 2016
    Publication date: May 3, 2018
    Inventors: Lei Zhang, Vincent W.S. Chan
  • Publication number: 20170005789
    Abstract: A pseudo-random cipher stream is used to band-spread an optical carrier signal with coded data. A legitimate receiver uses an agreed-upon key to modulate its local oscillator and a resulting beat signal uncovers the band-spread signal. An eavesdropper who does not have the key finds the spread signal with too low signal-to-noise ratio to perform any useful determination of the message sequence. Theoretical bounds based on Shannon's Theory of Secrecy are used to show strength of the encoding scheme and predict it to be superior to the prior art.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 5, 2017
    Inventor: Vincent W.S. Chan
  • Patent number: 5351146
    Abstract: There is disclosed the architecture for an all optic network which employs a three level hierarchy using wavelength vision multiplexing. At the lowest level of the hierarchy are Level-0 all optical networks. The Level-0 networks are "local" broadcast networks each of which supports a plurality of access ports and each access port can hear all the local traffic transmitted by all other access ports in the same Level-0 network. Each Level-0 network shares wavelengths internally, but there is extensive reuse of wavelengths among different Level-0 networks. The next higher level, which is the intermediate level, Level-1, is essentially a wavelength router coupled with one or more of the Level-0 networks to provide a wavelength path to one or more directly connect Level-0 networks or, in combination with a Level-2 network, a light path to one or more Level-0 network outside itself.
    Type: Grant
    Filed: March 1, 1993
    Date of Patent: September 27, 1994
    Assignees: AT&T Bell Laboratories, Digital Equipment Corporation, Massachusetts Institute of Technology
    Inventors: Vincent W. S. Chan, Robert G. Gallager, Alan J. Kirby, Adel A. M. Saleh