Patents by Inventor Vincent Welch

Vincent Welch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10252957
    Abstract: Methods and systems for the dehydrogenation of hydrocarbons include a direct contact condenser to remove compounds from an offgas process stream. The reduction of compounds can decrease duty on the offgas compressor by removing steam and aromatics from the offgas. The dehydrogenation reaction system can be applicable for reactions such as the dehydrogenation of ethylbenzene to produce styrene, the dehydrogenation of isoamiline to produce isoprene, or the dehydrogenation of n-pentene to produce piperylene.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: April 9, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Vincent A Welch, James R Butler
  • Patent number: 9902667
    Abstract: An energy conservation process directed to the purification of styrene monomer via distillation after the dehydrogenation reaction of ethylbenzene to produce crude styrene is disclosed. As practiced today, the purification of styrene via distillation requires large amounts of energy (i.e., steam) to provide heat to the various distillation columns. The presently disclosed improved process allows for a reduction in the amount of steam needed for this purpose.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: February 27, 2018
    Assignee: Technip Process Technology, Inc.
    Inventor: Vincent Welch
  • Publication number: 20170217857
    Abstract: Methods and systems for the dehydrogenation of hydrocarbons include a direct contact condenser to remove compounds from an offgas process stream. The reduction of compounds can decrease duty on the offgas compressor by removing steam and aromatics from the offgas. The dehydrogenation reaction system can be applicable for reactions such as the dehydrogenation of ethylbenzene to produce styrene, the dehydrogenation of isoamiline to produce isoprene, or the dehydrogenation of n-pentene to produce piperylene.
    Type: Application
    Filed: April 12, 2017
    Publication date: August 3, 2017
    Inventors: Vincent A. Welch, James R. Butler
  • Patent number: 9714203
    Abstract: The present invention is directed to reduced-energy improvements in methods and systems to produce styrene monomer via ethylbenzene dehydrogenation. The methods and systems reduce utility cost and provide savings in comparison with the current technology practiced in the industry.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 25, 2017
    Assignee: Technip Process Technology, Inc.
    Inventors: Vincent Welch, Slawomir A. Oleksy
  • Patent number: 9650317
    Abstract: Methods and systems for the dehydrogenation of hydrocarbons include a direct contact condenser to remove compounds from an offgas process stream. The reduction of compounds can decrease duty on the offgas compressor by removing steam and aromatics from the offgas. The dehydrogenation reaction system can be applicable for reactions such as the dehydrogenation of ethylbenzene to produce styrene, the dehydrogenation of isoamiline to produce isoprene, or the dehydrogenation of n-pentene to produce piperylene.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: May 16, 2017
    Assignee: Fina Technology, Inc.
    Inventors: Vincent A. Welch, James R. Butler
  • Publication number: 20160016863
    Abstract: The present invention is directed to reduced-energy improvements in methods and systems to produce styrene monomer via ethylbenzene dehydrogenation. The methods and systems reduce utility cost and provide savings in comparison with the current technology practiced in the industry.
    Type: Application
    Filed: March 15, 2013
    Publication date: January 21, 2016
    Applicant: Technip Process Technology, Inc.
    Inventors: Vincent A. WELCH, Slawomir A. OLEKSY
  • Publication number: 20150336859
    Abstract: An energy conservation process directed to the purification of styrene monomer via distillation after the dehydrogenation reaction of ethylbenzene to produce crude styrene is disclosed. As practiced today, the purification of styrene via distillation requires large amount energy (i.e., steam) to provide heat to the various distillation columns. The presently disclosed improved process allows for a reduction in the amount of steam needed for this purpose.
    Type: Application
    Filed: December 19, 2012
    Publication date: November 26, 2015
    Applicant: Technip Process Technology, Inc.
    Inventor: Vincent Welch
  • Publication number: 20150239805
    Abstract: Methods and systems for the dehydrogenation of hydrocarbons include a direct contact condenser to remove compounds from an offgas process stream. The reduction of compounds can decrease duty on the offgas compressor by removing steam and aromatics from the offgas. The dehydrogenation reaction system can be applicable for reactions such as the dehydrogenation of ethylbenzene to produce styrene, the dehydrogenation of isoamiline to produce isoprene, or the dehydrogenation of n-pentene to produce piperylene.
    Type: Application
    Filed: March 2, 2015
    Publication date: August 27, 2015
    Inventors: Vincent A. Welch, James R. Butler
  • Patent number: 8999257
    Abstract: Methods and systems for the dehydrogenation of hydrocarbons include a direct contact condenser to remove compounds from an offgas process stream. The reduction of compounds can decrease duty on the offgas compressor by removing steam and aromatics from the offgas. The dehydrogenation reaction system can be applicable for reactions such as the dehydrogenation of ethylbenzene to produce styrene, the dehydrogenation of isoamiline to produce isoprene, or the dehydrogenation of n-pentene to produce piperylene.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: April 7, 2015
    Assignee: Fina Technology, Inc.
    Inventors: Vincent A. Welch, James R. Butler
  • Publication number: 20150005735
    Abstract: A method and apparatus of applying a chemical treatment solution for effective castration of an animal through inducing cellular necrosis in or about the spermatic cord. The apparatus including a needlefree applicator head comprising a plurality of injector tubes for simultaneous treatment across a target areas. The target area being preferably clamped against the applicator head.
    Type: Application
    Filed: January 7, 2013
    Publication date: January 1, 2015
    Inventor: Peter St Vincent Welch
  • Patent number: 8193404
    Abstract: Methods and processes for increasing the efficiency and/or expanding the capacity of a dehydrogenation unit by use of at least one direct heating unit are described.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: June 5, 2012
    Assignee: Fina Technology, Inc.
    Inventors: Vincent A. Welch, Slawomir A. Oleksy
  • Publication number: 20120078025
    Abstract: Methods and processes for increasing the efficiency and/or expanding the capacity of a dehydrogenation unit by use of at least one direct heating unit are described.
    Type: Application
    Filed: November 22, 2011
    Publication date: March 29, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Vincent A. Welch, Slawomir A. Oleksy
  • Patent number: 8084660
    Abstract: Methods and processes for increasing the efficiency and/or expanding the capacity of a dehydrogenation unit by use of at least one direct heating unit are described.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: December 27, 2011
    Assignee: Fina Technology, Inc
    Inventors: Vincent A. Welch, Slawomir A. Oleksy
  • Patent number: 7922980
    Abstract: Improved methods and related apparatus are disclosed for efficiently recovering the heat of condensation from overhead vapor produced during separation of various components of dehydrogenation reaction effluent, particularly in ethylbenzene-to-styrene operations, by the use of at least a compressor to facilitate azeotropic vaporization of an ethylbenzene and water mixture within a preferred range of pressure/temperature conditions so as to minimize undesired polymerization reactions.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: April 12, 2011
    Assignee: Stone & Webster, Inc.
    Inventors: Slawomir A. Oleksy, Vincent A. Welch, Leslie F. Whittle
  • Publication number: 20110071330
    Abstract: Methods and systems for the dehydrogenation of hydrocarbons include a direct contact condenser to remove compounds from an offgas process stream. The reduction of compounds can decrease duty on the offgas compressor by removing steam and aromatics from the offgas. The dehydrogenation reaction system can be applicable for reactions such as the dehydrogenation of ethylbenzene to produce styrene, the dehydrogenation of isoamiline to produce isoprene, or the dehydrogenation of n-pentene to produce piperylene.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicant: Fina Technology, Inc.
    Inventors: Vincent A. Welch, James R. Butler
  • Publication number: 20100111785
    Abstract: Improved methods and related apparatus are disclosed for efficiently recovering the heat of condensation from overhead vapor produced during separation of various components of dehydrogenation reaction effluent, particularly in ethylbenzene-to-styrene operations, by the use of at least a compressor to facilitate azeotropic vaporization of an ethylbenzene and water mixture within a preferred range of pressure/temperature conditions so as to minimize undesired polymerization reactions.
    Type: Application
    Filed: November 2, 2009
    Publication date: May 6, 2010
    Inventors: Slawomir A. Oleksy, Vincent A. Welch, Leslie F. Whittle
  • Patent number: 7642390
    Abstract: Improved methods and related apparatus are disclosed for efficiently recovering the heat of condensation from overhead vapor produced during separation of various components of dehydrogenation reaction effluent, particularly in ethylbenzene-to-styrene operations, by the use of at least a compressor to facilitate azeotropic vaporization of an ethylbenzene and water mixture within a preferred range of pressure/temperature conditions so as to minimize undesired polymerization reactions.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: January 5, 2010
    Assignee: Stone & Webster, Inc.
    Inventors: Slawomir A. Oleksy, Vincent A. Welch, Leslie F. Whittle
  • Publication number: 20090264692
    Abstract: Methods and processes for increasing the efficiency and/or expanding the capacity of a dehydrogenation unit by use of at least one direct heating unit are described.
    Type: Application
    Filed: April 13, 2009
    Publication date: October 22, 2009
    Applicant: Fina Technologies, Inc.
    Inventors: Vincent A. Welch, Slawomir A. Oleksy
  • Publication number: 20050245779
    Abstract: Improved methods and related apparatus are disclosed for efficiently recovering the heat of condensation from overhead vapor produced during separation of various components of dehydrogenation reaction effluent, particularly in ethylbenzene-to-styrene operations, by the use of at least a compressor to facilitate azeotropic vaporization of an ethylbenzene and water mixture within a preferred range of pressure/temperature conditions so as to minimize undesired polymerization reactions.
    Type: Application
    Filed: June 5, 2003
    Publication date: November 3, 2005
    Inventors: Slawomir Oleksy, Vincent Welch, Leslie Whittle
  • Patent number: 6620386
    Abstract: Apparatus for radial flow reactor and methods of using the reactor for catalytic hydrocarbon processing. The reactor, of annular shaped housing, contains a core region with a heat exchange means. The core region is surrounded by a catalyst bed held by inner and outer walls. The core region and radial catalyst bed are further surrounded by an annular zone containing heat exchange means.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: September 16, 2003
    Assignee: Stone & Webster, Inc.
    Inventor: Vincent A. Welch