Patents by Inventor Vincenzo Daneu

Vincenzo Daneu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8867046
    Abstract: A method and an apparatus of measuring a position of a particle in a flow are disclosed. An embodiment of the method comprises temporally modulating and spatially pattering an illumination beam propagating along a first dimension, passing a particle across the modulated illumination beam, detecting a temporal profile of scattered light produced by the particle's passing through the modulated illumination beam, and determining the position of the particle based, in part, on the temporal profile of the detected scattered light.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: October 21, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Thomas H. Jeys, Antonio Sanchez-Rubio, Ronald H. Hoffeld, Jonathan Z. Lin, Nicholas M. F. Judson, George S. Haldeman, Vincenzo Daneu
  • Patent number: 8319965
    Abstract: Aerosol and hydrosol particle detection systems without knowledge of a location and velocity of a particle passing through a volume of space, are less efficient than if knowledge of the particle location is known. An embodiment of a particle position detection system capable of determining an exact location of a particle in a fluid stream is discussed. The detection system may employ a patterned illuminating beam, such that once a particle passes through the patterned illuminating beam, a light scattering is produced. The light scattering defines a temporal profile that contains measurement information indicative of an exact particle location. However, knowledge of the exact particle location has several advantages. These advantages include correction of systematic particle measurement errors due to variability of the particle position within the sample volume, targeting of particles based on position, capture of particles based on position, reduced system energy consumption and reduced system complexity.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: November 27, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Thomas H. Jeys, Antonio Sanchez-Rubio, Ronald H. Hoffeld, Jonathan Z. Lin, Nicholas M. F. Judson, George S. Haldeman, Vincenzo Daneu
  • Publication number: 20110051137
    Abstract: Aerosol and hydrosol particle detection systems without knowledge of a location and velocity of a particle passing through a volume of space, are less efficient than if knowledge of the particle location is known. An embodiment of a particle position detection system capable of determining an exact location of a particle in a fluid stream is discussed. The detection system may employ a patterned illuminating beam, such that once a particle passes through the patterned illuminating beam, a light scattering is produced. The light scattering defines a temporal profile that contains measurement information indicative of an exact particle location. However, knowledge of the exact particle location has several advantages. These advantages include correction of systematic particle measurement errors due to variability of the particle position within the sample volume, targeting of particles based on position, capture of particles based on position, reduced system energy consumption and reduced system complexity.
    Type: Application
    Filed: August 6, 2010
    Publication date: March 3, 2011
    Inventors: Thomas H. Jeys, Antonio Sanchez-Rubio, Ronald H. Hoffeld, Jonathan Z. Lin, Nicholas M.F. Judson, George S. Haldeman, Vincenzo Daneu
  • Patent number: 7821636
    Abstract: Aerosol and hydrosol particle detection systems without knowledge of a location and velocity of a particle passing through a volume of space, are less efficient than if knowledge of the particle location is known. An embodiment of a particle position detection system capable of determining an exact location of a particle in a fluid stream is discussed. The detection system may employ a patterned illuminating beam, such that once a particle passes through the patterned illuminating beam, a light scattering is produced. The light scattering defines a temporal profile that contains measurement information indicative of an exact particle location. However, knowledge of the exact particle location has several advantages. These advantages include correction of systematic particle measurement errors due to variability of the particle position within the sample volume, targeting of particles based on position, capture of particles based on position, reduced system energy consumption and reduced system complexity.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: October 26, 2010
    Assignee: Massachusetts Institute of Technology
    Inventors: Thomas H. Jeys, Antonio Sanchez-Rubio, Ronald H. Hoffeld, Jonathan Z. Lin, Nicholas M. F. Judson, George S. Haldeman, Vincenzo Daneu
  • Patent number: 7772579
    Abstract: Particle detection systems without knowledge of a location and velocity of a particle passing through a volume of space, are less efficient than if knowledge of the particle location is known. An embodiment of a particle position detection system capable of determining an exact location of a particle in a fluid stream is discussed. The detection system may employ a patterned illuminating beam, such that once a particle passes through the various portions of the patterned illuminating beam, a light scattering is produced. The light scattering defines a temporal profile that contains measurement information indicative of an exact particle location. However, knowledge of the exact particle location has several advantages. These advantages include correction of systematic particle measurement errors due to variability of the particle position within the sample volume, targeting of particles based on position, capture of particles based on position, reduced system energy consumption and reduced system complexity.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: August 10, 2010
    Assignee: Massachusetts Institute of Technology
    Inventors: William D. Herzog, Antonio Sanchez-Rubio, Gregory G. Cappiello, Ronald H. Hoffeld, Shane M. Tysk, Vincenzo Daneu, Thomas H. Jeys
  • Publication number: 20080068605
    Abstract: Particle detection systems without knowledge of a location and velocity of a particle passing through a volume of space, are less efficient than if knowledge of the particle location is known. An embodiment of a particle position detection system capable of determining an exact location of a particle in a fluid stream is discussed. The detection system may employ a patterned illuminating beam, such that once a particle passes through the various portions of the patterned illuminating beam, a light scattering is produced. The light scattering defines a temporal profile that contains measurement information indicative of an exact particle location. However, knowledge of the exact particle location has several advantages. These advantages include correction of systematic particle measurement errors due to variability of the particle position within the sample volume, targeting of particles based on position, capture of particles based on position, reduced system energy consumption and reduced system complexity.
    Type: Application
    Filed: May 18, 2007
    Publication date: March 20, 2008
    Inventors: William Herzog, Antonio Sanchez-Rubio, Gregory Cappiello, Ronald Hoffeld, Shane Tysk, Vincenzo Daneu, Thomas Jeys
  • Publication number: 20080030716
    Abstract: Aerosol and hydrosol particle detection systems without knowledge of a location and velocity of a particle passing through a volume of space, are less efficient than if knowledge of the particle location is known. An embodiment of a particle position detection system capable of determining an exact location of a particle in a fluid stream is discussed. The detection system may employ a patterned illuminating beam, such that once a particle passes through the patterned illuminating beam, a light scattering is produced. The light scattering defines a temporal profile that contains measurement information indicative of an exact particle location. However, knowledge of the exact particle location has several advantages. These advantages include correction of systematic particle measurement errors due to variability of the particle position within the sample volume, targeting of particles based on position, capture of particles based on position, reduced system energy consumption and reduced system complexity.
    Type: Application
    Filed: May 18, 2007
    Publication date: February 7, 2008
    Inventors: Thomas Jeys, Antonio Sanchez-Rubio, Ronald Hoffeld, Jonathan Lin, Nicholas Judson, George Haldeman, Vincenzo Daneu