Patents by Inventor Vipul Kumar Gupta

Vipul Kumar Gupta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11914342
    Abstract: A method, medium, and system including determining a material property value to assign to each of the plurality of 3D volume elements, wherein the material property values assigned to the plurality of 3D volume elements are classified into a predetermined number of bins that correspond to a plurality of different additive manufacturing (AM) print parameter sets, generating a plurality of transfer functions to determine relationships between the material property values assigned to the plurality of 3D volume elements and a plurality of desired AM print parameter sets, automatically determining, based on the plurality of transfer functions, an assignment of one of the plurality of different AM print parameter sets to each of the plurality of 3D volume elements, and validating the determined assignments of the plurality of different AM print parameter sets for the plurality of 3D volume elements based on the plurality of transfer functions.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: February 27, 2024
    Assignee: General Electric Company
    Inventors: Arvind Rangarajan, Christina Margaret Vasil, Joshua Mook, Anthony J. Vinciquerra, Brian McCarthy, Vipul Kumar Gupta
  • Publication number: 20230302539
    Abstract: A system and method for analyzing build files in an additive manufacturing process in order to predict defects in an additive part. The system and method further include the steps of reading an additive build file containing a set of scan paths of a three-dimensional (3D) object for a build, the set of scan paths comprising a plurality of points, creating a transfer function from parameters in the build file that corresponds to a local melt pool shape at each point of the plurality of points along the scan paths, and identifying potential defective portions of the additive part including at least one of pores, excessive melting, or surface finish based on the transfer function.
    Type: Application
    Filed: March 25, 2022
    Publication date: September 28, 2023
    Applicant: General Electric Company
    Inventors: Brian S. McCarthy, Pinghai Yang, Vipul Kumar Gupta, Andrey I. Meshkov, Rajesh Bollapragada
  • Patent number: 11660818
    Abstract: A method of testing a multi-specimen additive manufacturing build plate includes acquiring and installing the multi-specimen build plate in a test system, aligning one or more force exertion tools with respective selected specimens, imparting a force on the selected specimen(s), collecting test data from each selected specimen, and analyzing the collected data to identify a potential correlation between material behavior for the selected specimen and its applied manufacturing build parameter(s). A system and a non-transitory medium are also disclosed.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: May 30, 2023
    Assignee: General Electric Company
    Inventors: Scott Andrew Weaver, Timothy Hanlon, Vipul Kumar Gupta, Anthony J Vinciquerra, III
  • Publication number: 20230029806
    Abstract: According to some embodiments, system and methods are provided comprising receiving, via a communication interface of a parameter development module comprising a processor, a defined geometry for one or more parts, wherein the parts are manufactured with an additive manufacturing machine, and wherein a stack is formed from one or more parts; fabricating the one or more parts with the additive manufacturing machine based on a first parameter set; collecting in-situ monitoring data from one or more in-situ monitoring systems of the additive manufacturing machine for one or more parts; determining whether each stack should receive an additional part based on an analysis of the collected in-situ monitoring data; and fabricating each additional part based on the determination the stack should receive the additional part. Numerous other aspects are provided.
    Type: Application
    Filed: October 17, 2022
    Publication date: February 2, 2023
    Inventors: Vipul Kumar GUPTA, Natarajan CHENNIMALAI KUMAR, Anthony Joseph VINCIQUERRA, Laura Cerully DIAL, Voramon Supatarawanich DHEERADHADA, Timothy HANLON, Lembit SALASOO, Xiaohu PING, Subhrajit ROYCHOWDHURY, Justin John GAMBONE
  • Patent number: 11511491
    Abstract: Methods and systems for optimizing additive process parameters for an additive manufacturing process. In some embodiments, the process includes receiving initial additive process parameters, generating an uninformed design of experiment utilizing a specified sampling protocol, next generating, based on the uninformed design of experiment, response data, and then generating, based on the response data and on previous design of experiment that includes at least one of the uninformed design of experiment and informed design of experiment, an informed design of experiment by using the machine learning model and the intelligent sampling protocol. The last process step is repeated until a specified objective is reached or satisfied.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: November 29, 2022
    Assignee: General Electric Company
    Inventors: Voramon Supatarawanich Dheeradhada, Natarajan Chennimalai Kumar, Vipul Kumar Gupta, Laura Dial, Anthony Joseph Vinciquerra, Timothy Hanlon
  • Patent number: 11472115
    Abstract: According to some embodiments, system and methods are provided comprising receiving, via a communication interface of a parameter development module comprising a processor, a defined geometry for one or more parts, wherein the parts are manufactured with an additive manufacturing machine, and wherein a stack is formed from one or more parts; fabricating the one or more parts with the additive manufacturing machine based on a first parameter set; collecting in-situ monitoring data from one or more in-situ monitoring systems of the additive manufacturing machine for one or more parts; determining whether each stack should receive an additional part based on an analysis of the collected in-situ monitoring data; and fabricating each additional part based on the determination the stack should receive the additional part. Numerous other aspects are provided.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: October 18, 2022
    Assignee: General Electric Company
    Inventors: Vipul Kumar Gupta, Natarajan Chennimalai Kumar, Anthony Joseph Vinciquerra, Laura Cerully Dial, Voramon Supatarawanich Dheeradhada, Timothy Hanlon, Lembit Salasoo, Xiaohu Ping, Subhrajit Roychowdhury, Justin John Gambone
  • Publication number: 20220035336
    Abstract: A method, medium, and system including determining a material property value to assign to each of the plurality of 3D volume elements, wherein the material property values assigned to the plurality of 3D volume elements are classified into a predetermined number of bins that correspond to a plurality of different additive manufacturing (AM) print parameter sets, generating a plurality of transfer functions to determine relationships between the material property values assigned to the plurality of 3D volume elements and a plurality of desired AM print parameter sets, automatically determining, based on the plurality of transfer functions, an assignment of one of the plurality of different AM print parameter sets to each of the plurality of 3D volume elements, and validating the determined assignments of the plurality of different AM print parameter sets for the plurality of 3D volume elements based on the plurality of transfer functions.
    Type: Application
    Filed: October 19, 2021
    Publication date: February 3, 2022
    Inventors: Arvind RANGARAJAN, Christina Margaret VASIL, Joshua MOOK, Anthony J. VINCIQUERRA, Brian MCCARTHY, Vipul Kumar GUPTA
  • Patent number: 11181888
    Abstract: A method, medium, and system to automatically determine parameter sets for an additive manufacturing (AM) of a part, the method including executing a load analysis on a model of a part to emulate a load on each of a plurality of regions of the part; determining a representation of the model of the part as a plurality of discrete three-dimensional (3D) volume elements; determining, based on an output of the load analysis, a life or material property value to assign to each of the plurality of 3D volume elements; automatically determining an assignment of one of a plurality of additive manufacturing (AM) print parameter sets to each of the plurality of 3D volume elements; and saving a record of the determined assignments of the AM print parameter sets to each of the plurality of 3D volume elements.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: November 23, 2021
    Assignee: General Electric Company
    Inventors: Arvind Rangarajan, Christina Margaret Vasil, Joshua Mook, Anthony J. Vinciquerra, Brian McCarthy, Vipul Kumar Gupta
  • Patent number: 11144035
    Abstract: A method of additive manufacturing machine (AMM) build process control includes obtaining AMM machine and process parameter settings, accessing sensor data for monitored physical conditions in the AMM, calculating a difference between expected AMM physical conditions and elements of the monitored conditions, providing the machine and process parameter settings, monitored conditions, and differences to one or more material property prediction models, computing a predicted value or range for the monitored conditions, comparing the predicted value or range to a predetermined target range, based on a determination that predicted value(s) are within the predetermined range, maintaining the machine and process parameter settings, or based on a determination that one or more of the predicted value(s) is outside the predetermined range, generating commands to compensate the machine and process parameter settings, and repeating the closed feedback loop at intervals of time during the build process.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: October 12, 2021
    Assignee: General Electric Company
    Inventors: Vipul Kumar Gupta, Natarajan Chennimalai Kumar, Anthony J Vinciquerra, III, Randal T Rausch, Subhrajit Roychowdhury, Justin John Gambone, Jr.
  • Publication number: 20210034037
    Abstract: A method, medium, and system to automatically determine parameter sets for an additive manufacturing (AM) of a part, the method including executing a load analysis on a model of a part to emulate a load on each of a plurality of regions of the part; determining a representation of the model of the part as a plurality of discrete three-dimensional (3D) volume elements; determining, based on an output of the load analysis, a life or material property value to assign to each of the plurality of 3D volume elements; automatically determining an assignment of one of a plurality of additive manufacturing (AM) print parameter sets to each of the plurality of 3D volume elements; and saving a record of the determined assignments of the AM print parameter sets to each of the plurality of 3D volume elements.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 4, 2021
    Inventors: Arvind RANGARAJAN, Christina Margaret VASIL, Joshua MOOK, Anthony J. VINCIQUERRA, Brian MCCARTHY, Vipul Kumar GUPTA
  • Patent number: 10884396
    Abstract: According to some embodiments, system and methods are provided comprising receiving, via a communication interface of a platform comprising a segmentation module and a processor, a defined geometry for one or more geometric structures forming one or more parts, wherein the parts are manufactured with an additive manufacturing machine; generating a build file including an initial parameter set to fabricate each part; fabricating the part based on the build file; receiving sensor data for the fabricated part; generating a parameter set for each layer that forms the part, via execution of an iterative learning control process for each layer; generating raw power data for each layer that forms the part, using the processor, based on the generated parameter set; applying a noise reduction process to the raw power data; and generating a segmented build file, using the segmentation module, via application of the noise reduction process on the raw power data. Numerous other aspects are provided.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: January 5, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Subhrajit Roychowdhury, Vipul Kumar Gupta, Randal T Rausch, Justin John Gambone, Xiaohu Ping, Alexander Chen, John Erik Hershey
  • Publication number: 20200393813
    Abstract: A method of additive manufacturing machine (AMM) build process control includes obtaining AMM machine and process parameter settings, accessing sensor data for monitored physical conditions in the AMM, calculating a difference between expected AMM physical conditions and elements of the monitored conditions, providing the machine and process parameter settings, monitored conditions, and differences to one or more material property prediction models, computing a predicted value or range for the monitored conditions, comparing the predicted value or range to a predetermined target range, based on a determination that predicted value(s) are within the predetermined range, maintaining the machine and process parameter settings, or based on a determination that one or more of the predicted value(s) is outside the predetermined range, generating commands to compensate the machine and process parameter settings, and repeating the closed feedback loop at intervals of time during the build process.
    Type: Application
    Filed: June 14, 2019
    Publication date: December 17, 2020
    Inventors: Vipul Kumar GUPTA, Natarajan CHENNIMALAI KUMAR, Anthony J. VINCIQUERRA, III, Randal T. RAUSCH, Subhrajit ROYCHOWDHURY, Justin John GAMBONE, JR.
  • Publication number: 20200391441
    Abstract: A method of testing a multi-specimen additive manufacturing build plate includes acquiring and installing the multi-specimen build plate in a test system, aligning one or more force exertion tools with respective selected specimens, imparting a force on the selected specimen(s), collecting test data from each selected specimen, and analyzing the collected data to identify a potential correlation between material behavior for the selected specimen and its applied manufacturing build parameter(s). A system and a non-transitory medium are also disclosed.
    Type: Application
    Filed: June 12, 2019
    Publication date: December 17, 2020
    Inventors: Scott Andrew WEAVER, Timothy HANLON, Vipul Kumar GUPTA, Anthony J VINCIQUERRA, III
  • Publication number: 20200298499
    Abstract: According to some embodiments, system and methods are provided comprising receiving, via a communication interface of a parameter development module comprising a processor, a defined geometry for one or more parts, wherein the parts are manufactured with an additive manufacturing machine, and wherein a stack is formed from one or more parts; fabricating the one or more parts with the additive manufacturing machine based on a first parameter set; collecting in-situ monitoring data from one or more in-situ monitoring systems of the additive manufacturing machine for one or more parts; determining whether each stack should receive an additional part based on an analysis of the collected in-situ monitoring data; and fabricating each additional part based on the determination the stack should receive the additional part. Numerous other aspects are provided.
    Type: Application
    Filed: March 21, 2019
    Publication date: September 24, 2020
    Inventors: Vipul Kumar GUPTA, Natarajan CHENNIMALAI KUMAR, Anthony Joseph VINCIQUERRA, Laura Cerully DIAL, Voramon Supatarawanich DHEERADHADA, Timothy HANLON, Lembit SALASOO, Xiaohu PING, Subhrajit ROYCHOWDHURY, Justin John GAMBONE
  • Publication number: 20200272128
    Abstract: According to some embodiments, system and methods are provided comprising receiving, via a communication interface of a platform comprising a segmentation module and a processor, a defined geometry for one or more geometric structures forming one or more parts, wherein the parts are manufactured with an additive manufacturing machine; generating a build file including an initial parameter set to fabricate each part; fabricating the part based on the build file; receiving sensor data for the fabricated part; generating a parameter set for each layer that forms the part, via execution of an iterative learning control process for each layer; generating raw power data for each layer that forms the part, using the processor, based on the generated parameter set; applying a noise reduction process to the raw power data; and generating a segmented build file, using the segmentation module, via application of the noise reduction process on the raw power data. Numerous other aspects are provided.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 27, 2020
    Inventors: Subhrajit ROYCHOWDHURY, Vipul Kumar GUPTA, Randal T RAUSCH, Justin John GAMBONE, Xiaohu PING, Alexander CHEN, John Erik HERSHEY
  • Publication number: 20200147889
    Abstract: Methods and systems for optimizing additive process parameters for an additive manufacturing process. In some embodiments, the process includes receiving initial additive process parameters, generating an uninformed design of experiment utilizing a specified sampling protocol, next generating, based on the uninformed design of experiment, response data, and then generating, based on the response data and on previous design of experiment that includes at least one of the uninformed design of experiment and informed design of experiment, an informed design of experiment by using the machine learning model and the intelligent sampling protocol. The last process step is repeated until a specified objective is reached or satisfied.
    Type: Application
    Filed: November 8, 2018
    Publication date: May 14, 2020
    Inventors: Voramon Supatarawanich DHEERADHADA, Natarajan CHENNIMALAI KUMAR, Vipul Kumar GUPTA, Laura DIAL, Anthony Joseph VINCIQUERRA, Timothy HANLON
  • Patent number: 10365192
    Abstract: An apparatus and method for rapid screening of material properties in a plurality of additively manufactured test specimens. The apparatus includes a build plate having the plurality of additively manufactured test specimens disposed on a first substantially planar surface. The plurality of additively manufactured test specimens are coupled to at least one actuator to one of individually or simultaneously translationally displace each of the test specimens along an axis ā€œzā€, and perpendicular to the build plane of the build plate to test material properties of each of the plurality of additively manufactured test specimens. A sensor is coupled to each of the plurality of additively manufactured test specimens. Load vs. displacement data may be used to monitor the progression of monotonic and/or cyclic tests of the plurality of additively manufactured test specimens.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: July 30, 2019
    Assignee: General Electric Company
    Inventors: Andrew David Deal, Timothy Hanlon, Vipul Kumar Gupta, Erica Elizabeth Sampson, Justin John Gambone, Jr., Scott Michael Oppenheimer, Laura Cerully Dial
  • Publication number: 20180188144
    Abstract: An apparatus and method for rapid screening of material properties in a plurality of additively manufactured test specimens. The apparatus includes a build plate having the plurality of additively manufactured test specimens disposed on a first substantially planar surface. The plurality of additively manufactured test specimens are coupled to at least one actuator to one of individually or simultaneously translationally displace each of the test specimens along an axis ā€œzā€, and perpendicular to the build plane of the build plate to test material properties of each of the plurality of additively manufactured test specimens. A sensor is coupled to each of the plurality of additively manufactured test specimens. Load vs. displacement data may be used to monitor the progression of monotonic and/or cyclic tests of the plurality of additively manufactured test specimens.
    Type: Application
    Filed: January 3, 2017
    Publication date: July 5, 2018
    Inventors: Andrew David Deal, Timothy Hanlon, Vipul Kumar Gupta, Erica Elizabeth Sampson, Justin John Gambone, JR., Scott Michael Oppenheimer, Laura Cerully Dial