Patents by Inventor Vipulkumar Kantilal Patel

Vipulkumar Kantilal Patel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7499620
    Abstract: A method and structure for reducing optical signal loss in a silicon waveguide formed within a silicon-on-insulator (SOI) structure uses CMOS processing techniques to round the edges/corners of the silicon material along the extent of the waveguiding region. One exemplary set of processes utilizes an additional, sacrificial silicon layer that is subsequently etched to form silicon sidewall fillets along the optical waveguide, the fillets thus “rounding” the edges of the waveguide. Alternatively, the sacrificial silicon layer can be oxidized to consume a portion of the underlying silicon waveguide layer, also rounding the edges. Instead of using a sacrificial silicon layer, an oxidation-resistant layer may be patterned over a blanket silicon layer, the pattern defined to protect the optical waveguiding region.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: March 3, 2009
    Assignee: Lightwire, Inc.
    Inventors: Vipulkumar Kantilal Patel, Prakash Gothoskar, Robert Keith Montgomery, Margaret Ghiron
  • Patent number: 7118682
    Abstract: A method and structure for reducing optical signal loss in a silicon waveguide formed within a silicon-on-insulator (SOI) structure uses CMOS processing techniques to round the edges/corners of the silicon material along the extent of the waveguiding region. One exemplary set of processes utilizes an additional, sacrificial silicon layer that is subsequently etched to form silicon sidewall fillets along the optical waveguide, the fillets thus “rounding” the edges of the waveguide. Alternatively, the sacrificial silicon layer can be oxidized to consume a portion of the underlying silicon waveguide layer, also rounding the edges. Instead of using a sacrificial silicon layer, an oxidation-resistant layer may be patterned over a blanket silicon layer, the pattern defined to protect the optical waveguiding region.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: October 10, 2006
    Assignee: SiOptical, Inc.
    Inventors: Vipulkumar Kantilal Patel, Prakash Gothoskar, Robert Keith Montgomery, Margaret Ghiron
  • Patent number: 6993225
    Abstract: Methods of forming a tapered evanescent coupling region for use with a relatively thin silicon optical waveguide formed with, for example, an SOI structure. A tapered evanescent coupling region is formed in a silicon substrate that is used as a coupling substrate, the coupling substrate thereafter joined to the SOI structure. A gray-scale photolithography process is used to define a tapered region in photoresist, the tapered pattern thereafter transferred into the silicon substrate. A material exhibiting a lower refractive index than the silicon optical waveguide layer (e.g., silicon dioxide) is then used to fill the tapered opening in the substrate. Advantageously, conventional silicon processing steps may be used to form coupling facets in the silicon substrate (i.e., angled surfaces, V-grooves) in an appropriate relation to the tapered evanescent coupling region.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: January 31, 2006
    Assignee: SiOptical, Inc.
    Inventors: Vipulkumar Kantilal Patel, Prakash Gothoskar, Robert Keith Montgomery, Margaret Ghiron
  • Publication number: 20040240822
    Abstract: A method and structure for reducing optical signal loss in a silicon waveguide formed within a silicon-on-insulator (SOI) structure uses CMOS processing techniques to round the edges/corners of the silicon material along the extent of the waveguiding region. One exemplary set of processes utilizes an additional, sacrificial silicon layer that is subsequently etched to form silicon sidewall fillets along the optical waveguide, the fillets thus “rounding” the edges of the waveguide. Alternatively, the sacrificial silicon layer can be oxidized to consume a portion of the underlying silicon waveguide layer, also rounding the edges. Instead of using a sacrificial silicon layer, an oxidation-resistant layer may be patterned over a blanket silicon layer, the pattern defined to protect the optical waveguiding region.
    Type: Application
    Filed: March 23, 2004
    Publication date: December 2, 2004
    Inventors: Vipulkumar Kantilal Patel, Prakash Gothoskar, Robert Keith Montgomery, Margaret Ghiron
  • Patent number: 6649454
    Abstract: A process for forming a portion of a charge coupled device (CCD) is described. More particularly, wells (105) are formed self-aligned under gate stacks (132, 134). By forming wells (105) self-aligned to respective first and second gates (107, 207) of gate stacks (132, 134), potential for misalignment is reduced. First gates (107) of gate stacks (132) may be coupled together, and second gates (207) of gate stacks (134) may be coupled together, and these first and second gates (107, 207) may be coupled to respective signal sources (23, 24) to form a two-phase CCD.
    Type: Grant
    Filed: November 10, 2000
    Date of Patent: November 18, 2003
    Assignee: Sarnoff Corporation
    Inventors: Pradyumna Kumar Swain, Vipulkumar Kantilal Patel
  • Patent number: 6028615
    Abstract: An inexpensive, robust plasma discharge emitter that repeatably creates a patterned charge on a substrate. To facilitate highly accurate charge deposition, each emitter contains a plasma well for confining the plasma within the emitter. Additionally, a plurality of emitters are arranged in an array to provide a practical charge patterning device. Furthermore, to fabricate an emitter or an array of emitters, a relatively low-cost, repeatable method of fabrication is used that relies upon conventional integrated circuit fabrication techniques.
    Type: Grant
    Filed: August 18, 1997
    Date of Patent: February 22, 2000
    Assignee: Sarnoff Corporation
    Inventors: Timothy Allen Pletcher, Vipulkumar Kantilal Patel, Robert Amantea