Patents by Inventor Virendra Bansal

Virendra Bansal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10089194
    Abstract: The disclosure relates to an apparatus and method for false pass detection in lockstep dual processing core systems, triple modular redundancy (TMR) systems, or other redundant processing systems. A false pass occurs when two processing cores generate matching data outputs, both of which are in error. A false pass may occur when the processing core are both subjected to substantially the same adverse condition, such as a supply voltage drop or a sudden temperature change or gradient. The apparatus includes processing cores configured to generate first and second data outputs and first and second timing violation signals. A voter-comparator validates the first and second data outputs if they match and the first and second timing violation signals indicate no timing violations. Otherwise, the voter comparator invalidates the first and second data outputs. Validated data outputs are used for performing additional operations, and invalidated data outputs may be discarded.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: October 2, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Palkesh Jain, Virendra Bansal, Rahul Gulati
  • Patent number: 9915968
    Abstract: The present disclosure is directed to mitigating voltage droops. An aspect includes outputting, by a clock module coupled to a multiplexor, a first clock signal to the multiplexor, the first clock signal generated by a clock delay component of the clock module, receiving, by the clock module, a second clock signal from a phase-locked loop (PLL), wherein the PLL outputs a third clock signal to a processor coupled to the PLL and the multiplexor, selecting, by the multiplexor, the first clock signal to output to the processor based on detecting a droop in voltage on a power supply, and selecting, by the multiplexor, the third clock signal to output to the processor based on detecting that the droop in the voltage on the power supply has passed, wherein the clock module and the processor are coupled to the power supply.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: March 13, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Palkesh Jain, Virendra Bansal, Manoj Mehrotra, Keith Alan Bowman
  • Patent number: 9897651
    Abstract: Various aspects include a clock monitoring unit/component that is configured to repeatedly/continuously monitor a clock with the speed required to support automobile automation systems without the use of a reference clock. The clock monitoring unit/component may be configured to identify, report, and/or respond to variations or abnormalities in the monitored clock, and initiate an action to prevent the variation from causing or resulting in a failure or a vulnerability to attack. The clock monitoring unit/component in the various aspects may be configured, organized, or arranged to operate so that the circuit is immune or resistant to manipulation, modification, tampering, hacks, and other attacks.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: February 20, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Virendra Bansal, Rahul Gulati, Palkesh Jain, Roberto Avanzi
  • Publication number: 20170357557
    Abstract: The disclosure relates to an apparatus and method for false pass detection in lockstep dual processing core systems, triple modular redundancy (TMR) systems, or other redundant processing systems. A false pass occurs when two processing cores generate matching data outputs, both of which are in error. A false pass may occur when the processing core are both subjected to substantially the same adverse condition, such as a supply voltage drop or a sudden temperature change or gradient. The apparatus includes processing cores configured to generate first and second data outputs and first and second timing violation signals. A voter-comparator validates the first and second data outputs if they match and the first and second timing violation signals indicate no timing violations. Otherwise, the voter comparator invalidates the first and second data outputs. Validated data outputs are used for performing additional operations, and invalidated data outputs may be discarded.
    Type: Application
    Filed: June 8, 2016
    Publication date: December 14, 2017
    Inventors: Palkesh Jain, Virendra Bansal, Rahul Gulati
  • Publication number: 20170300080
    Abstract: The present disclosure is directed to mitigating voltage droops. An aspect includes outputting, by a clock module coupled to a multiplexor, a first clock signal to the multiplexor, the first clock signal generated by a clock delay component of the clock module, receiving, by the clock module, a second clock signal from a phase-locked loop (PLL), wherein the PLL outputs a third clock signal to a processor coupled to the PLL and the multiplexor, selecting, by the multiplexor, the first clock signal to output to the processor based on detecting a droop in voltage on a power supply, and selecting, by the multiplexor, the third clock signal to output to the processor based on detecting that the droop in the voltage on the power supply has passed, wherein the clock module and the processor are coupled to the power supply.
    Type: Application
    Filed: April 19, 2016
    Publication date: October 19, 2017
    Inventors: Palkesh JAIN, Virendra BANSAL, Manoj MEHROTRA, Keith Alan BOWMAN
  • Publication number: 20170255223
    Abstract: Various aspects include a clock monitoring unit/component that is configured to repeatedly/continuously monitor a clock with the speed required to support automobile automation systems without the use of a reference clock. The clock monitoring unit/component may be configured to identify, report, and/or respond to variations or abnormalities in the monitored clock, and initiate an action to prevent the variation from causing or resulting in a failure or a vulnerability to attack. The clock monitoring unit/component in the various aspects may be configured, organized, or arranged to operate so that the circuit is immune or resistant to manipulation, modification, tampering, hacks, and other attacks.
    Type: Application
    Filed: March 3, 2016
    Publication date: September 7, 2017
    Inventors: Virendra Bansal, Rahul Gulati, Palkesh Jain, Roberto Avanzi
  • Publication number: 20170222430
    Abstract: An integrated circuit (IC) is disclosed herein for short-resistant output pin circuitry. In an example aspect, an integrated circuit includes a short-resistant pin and an adjacent pin. The integrated circuit also includes a short-resistant pad that is coupled to the short-resistant pin and an adjacent pad that is coupled to the adjacent pin. The integrated circuit further includes short-resistant circuitry that is coupled to the short-resistant pad and the adjacent pad. The short-resistant circuitry is implemented to detect a short-circuit condition between the short-resistant pin and the adjacent pin and to reduce an effect of the short-circuit condition on the short-resistant pin.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 3, 2017
    Inventors: Virendra Bansal, Rahul Gulati, Pranjal Bhuyan, Palkesh Jain
  • Patent number: 9628089
    Abstract: An adaptive clock distribution (ACD) system with a voltage tracking clock generator (VTCG) is disclosed. The ACD system includes a tunable-length delay (TLD) circuit, to generate a TLD clock by adding a preselected delay to a root clock, and a voltage droop detector for detecting a voltage droop in a supply voltage. The VTCG is configured to generate a VTCG clock, wherein a frequency of the VTCG clock is finely tuned to one of two or more values to correspond to a magnitude of the supply voltage during the voltage droop. A clock selector selects the VTCG clock as an ACD clock to be provided to an electronic circuit during the voltage droop and the TLD clock as the ACD clock when there is no voltage droop detected.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: April 18, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Palkesh Jain, Keith Alan Bowman, Virendra Bansal