Patents by Inventor Virginia M. REINER
Virginia M. REINER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11060045Abstract: Systems and methods are provided for processing a feed derived from a renewable source to form oligomerized compounds corresponding to waxes, ketone waxes, and/or lubricant boiling range compounds. The oligomerized compounds derived from the renewable source can have various novel properties relative to waxes and/or lubricant boiling range compounds derived from mineral sources or derived from renewable sources in a conventional manner. The oligomerized compounds can be derived from a renewable source including fatty acids and/or fatty acid derivatives, such as glycerides (including triglycerides) and fatty amides. Optionally but preferably, at least a portion of the fatty acids and/or fatty acid derivatives can include olefinic bonds.Type: GrantFiled: June 19, 2017Date of Patent: July 13, 2021Assignee: ExxonMobil Research and Engineering CompanyInventors: Virginia M. Reiner, Michel Daage, Kun Wang, Chunping Wu, Sarvesh K. Agrawal
-
Patent number: 10450256Abstract: The present disclosure provides ketone waxes, methods of forming ketone waxes, and compositions comprising ketone waxes. In at least one embodiment, a ketone wax is provided. The ketone wax includes about 50 wt % or greater C40-C90 ketone content; about 50 wt % or greater of the ketone wax has a boiling point of 961° F. or greater; and a paraffins content of less than about 10 wt %, as determined by 2-dimensional gas chromatography. In at least one embodiment, a method for forming a C40-C90 ketone wax includes exposing a feed stock to a basic catalyst under conditions suitable for coupling unsaturated carbon chains from the feed to form a composition including a ketone wax, oligomerizing the ketone wax to form a ketone wax having C40-C90 ketone wax, and distilling and/or extracting the oligomerized ketone wax to provide a C40-C90 ketone wax of the present disclosure.Type: GrantFiled: September 21, 2018Date of Patent: October 22, 2019Assignee: ExxonMobil Research and Engineering CompanyInventors: Virginia M. Reiner, Michel Daage, Kun Wang, Sarvesh K. Agrawal, Frank C. Wang
-
Patent number: 10435359Abstract: Provided herein are various methods for forming alkylaromatic sulfonate compositions and blended alkylaromatic sulfonate compositions, and such compositions themselves. The methods of various embodiments include obtaining a C8-C30 hydrocarbon mixture, optionally treating the mixture to concentrate the mixture in sulfonatable aromatics, and sulfonating the mixture to form the alkylaromatic sulfonates. The mixture or treated mixture may be blended with linear alkyl benzene (LAB) compositions and sulfonated, and/or the alkylaryl sulfonates may be blended with linear alkylbenzene sulfonate (LAS) compositions, to form the blended alkylaromatic sulfonates of some embodiments. These compositions and processes for making them may be tailored to serve a variety of end uses, such as detergents in cleaning solutions or for enhanced oil recovery operations, and/or as low foaming and/or hydrotropic additives in detergent formulations, and the like.Type: GrantFiled: August 9, 2017Date of Patent: October 8, 2019Assignee: ExxonMobil Chemical Patents Inc.Inventors: Tracie L. Owens, Virginia M. Reiner, Mosha H. Zhao, Jingwen Zhang, Beatrice M. Gooding, James R. Bielenberg
-
Patent number: 10421915Abstract: Systems and methods are provided for pretreatment and upgrading of crude bio oils for further processing and/or use as fuel products. Crude bio oils can be treated by one or more of flash fractionation and thermal cracking to generate fractions suitable for further processing, such as further hydroprocessing. Blending of crude bio oil fractions with mineral feeds can also be used to reduce metals contents to levels suitable for refinery processing.Type: GrantFiled: December 2, 2016Date of Patent: September 24, 2019Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Virginia M. Reiner, Rustom M. Billimoria, William G. Borghard, William E. Lewis, John S. Buchanan
-
Publication number: 20190241707Abstract: Technical lignin compositions and pyrolysis methods for forming such technical lignin compositions from pyrolyzed biomass are provided. The technical lignin compositions can include at least about 50 wt % phenolic polymers and/or at least about 75 wt % combined phenolic monomers and phenolic polymers. In some aspects, less than about 50 wt % of the linkages between benzylic units in the phenolic polymers and/or in the composition can correspond to ?-O-4 linkages. At least about 50 wt % of the hydroxyl groups in the composition can correspond to phenolic hydroxyl groups. At least about 60 wt % of the phenolic hydroxyl groups and/or phenolic ether groups can correspond to phenolic hydroxyl groups and/or phenolic ether groups in an ortho position relative to at least one substituent.Type: ApplicationFiled: March 27, 2019Publication date: August 8, 2019Inventors: Virginia M. Reiner, Nabila Brabez, Ross Mabon, Ashley M. Wittrig
-
Patent number: 10351521Abstract: Provided herein are various methods for forming alkylaromatic sulfonate compositions and blended alkylaromatic sulfonate compositions, and such compositions themselves. The methods of various embodiments include obtaining a C8-C30 hydrocarbon mixture, optionally treating the mixture to concentrate the mixture in sulfonatable aromatics, and sulfonating the mixture to form the alkylaromatic sulfonates. The mixture or treated mixture may be blended with linear alkyl benzene (LAB) compositions and sulfonated, and/or the alkylaryl sulfonates may be blended with linear alkylbenzene sulfonate (LAS) compositions, to form the blended alkylaromatic sulfonates of some embodiments. These compositions and processes for making them may be tailored to serve a variety of end uses, such as detergents in cleaning solutions or for enhanced oil recovery operations, and/or as low foaming and/or hydrotropic additives in detergent formulations, and the like.Type: GrantFiled: August 9, 2017Date of Patent: July 16, 2019Assignee: ExxonMobil Chemical Patents Inc.Inventors: Virginia M. Reiner, Jingwen Zhang, Tracie L. Owens, Mosha H. Zhao
-
Patent number: 10351520Abstract: Provided herein are various methods for forming alkylaromatic sulfonate compositions and blended alkylaromatic sulfonate compositions, and such compositions themselves. The methods of various embodiments include obtaining a C8-C30 hydrocarbon mixture, optionally treating the mixture to concentrate the mixture in sulfonatable aromatics, and sulfonating the mixture to form the alkylaromatic sulfonates. The mixture or treated mixture may be blended with linear alkyl benzene (LAB) compositions and sulfonated, and/or the alkylaryl sulfonates may be blended with linear alkylbenzene sulfonate (LAS) compositions, to form the blended alkylaromatic sulfonates of some embodiments. These compositions and processes for making them may be tailored to serve a variety of end uses, such as detergents in cleaning solutions or for enhanced oil recovery operations, and/or as low foaming and/or hydrotropic additives in detergent formulations, and the like.Type: GrantFiled: August 9, 2017Date of Patent: July 16, 2019Assignee: ExxonMobil Chemical Patents Inc.Inventors: Mosha H. Zhao, Virginia M. Reiner, Jingwen Zhang, Tracie L. Owens
-
Publication number: 20190106371Abstract: The present disclosure provides ketone waxes, methods of forming ketone waxes, and compositions comprising ketone waxes. In at least one embodiment, a ketone wax is provided. The ketone wax includes about 50 wt % or greater C40-C90 ketone content; about 50 wt % or greater of the ketone wax has a boiling point of 961° F. or greater; and a paraffins content of less than about 10 wt %, as determined by 2-dimensional gas chromatography. In at least one embodiment, a method for forming a C40-C90 ketone wax includes exposing a feed stock to a basic catalyst under conditions suitable for coupling unsaturated carbon chains from the feed to form a composition including a ketone wax, oligomerizing the ketone wax to form a ketone wax having C40-C90 ketone wax, and distilling and/or extracting the oligomerized ketone wax to provide a C40-C90 ketone wax of the present disclosure.Type: ApplicationFiled: September 21, 2018Publication date: April 11, 2019Inventors: Virginia M. Reiner, Michel Daage, Kun Wang, Sarvesh K. Agrawal, Frank C. Wang
-
Publication number: 20180066116Abstract: Technical lignin compositions and pyrolysis methods for forming such technical lignin compositions from pyrolyzed biomass are provided. The technical lignin compositions can include at least about 50 wt % phenolic polymers and/or at least about 75 wt % combined phenolic monomers and phenolic polymers. In some aspects, less than about 50 wt % of the linkages between benzylic units in the phenolic polymers and/or in the composition can correspond to ?-O-4 linkages. At least about 50 wt% of the hydroxyl groups in the composition can correspond to phenolic hydroxyl groups. At least about 60 wt % of the phenolic hydroxyl groups and/or phenolic ether groups can correspond to phenolic hydroxyl groups and/or phenolic ether groups in an ortho position relative to at least one substituent.Type: ApplicationFiled: August 14, 2017Publication date: March 8, 2018Inventors: Virginia M. REINER, Nabila BRABEZ, Ross MABON, Ashley M. WITTRIG
-
Publication number: 20180057451Abstract: Provided herein are various methods for forming alkylaromatic sulfonate compositions and blended alkylaromatic sulfonate compositions, and such compositions themselves. The methods of various embodiments include obtaining a C8-C30 hydrocarbon mixture, optionally treating the mixture to concentrate the mixture in sulfonatable aromatics, and sulfonating the mixture to form the alkylaromatic sulfonates. The mixture or treated mixture may be blended with linear alkyl benzene (LAB) compositions and sulfonated, and/or the alkylaryl sulfonates may be blended with linear alkylbenzene sulfonate (LAS) compositions, to form the blended alkylaromatic sulfonates of some embodiments. These compositions and processes for making them may be tailored to serve a variety of end uses, such as detergents in cleaning solutions or for enhanced oil recovery operations, and/or as low foaming and/or hydrotropic additives in detergent formulations, and the like.Type: ApplicationFiled: August 9, 2017Publication date: March 1, 2018Inventors: Tracie L. Owens, Virginia M. Reiner, Mosha H. Zhao, Jingwen Zhang, Beatrice M. Gooding, James R. Bielenberg
-
Publication number: 20180057452Abstract: Provided herein are various methods for forming alkylaromatic sulfonate compositions and blended alkylaromatic sulfonate compositions, and such compositions themselves. The methods of various embodiments include obtaining a C8-C30 hydrocarbon mixture, optionally treating the mixture to concentrate the mixture in sulfonatable aromatics, and sulfonating the mixture to form the alkylaromatic sulfonates. The mixture or treated mixture may be blended with linear alkyl benzene (LAB) compositions and sulfonated, and/or the alkylaryl sulfonates may be blended with linear alkylbenzene sulfonate (LAS) compositions, to form the blended alkylaromatic sulfonates of some embodiments. These compositions and processes for making them may be tailored to serve a variety of end uses, such as detergents in cleaning solutions or for enhanced oil recovery operations, and/or as low foaming and/or hydrotropic additives in detergent formulations, and the like.Type: ApplicationFiled: August 9, 2017Publication date: March 1, 2018Inventors: Mosha H. Zhao, Virginia M. Reiner, Jingwen Zhang, Tracie L. Owens
-
Publication number: 20180057453Abstract: Provided herein are various methods for forming alkylaromatic sulfonate compositions and blended alkylaromatic sulfonate compositions, and such compositions themselves. The methods of various embodiments include obtaining a C8-C30 hydrocarbon mixture, optionally treating the mixture to concentrate the mixture in sulfonatable aromatics, and sulfonating the mixture to form the alkylaromatic sulfonates. The mixture or treated mixture may be blended with linear alkyl benzene (LAB) compositions and sulfonated, and/or the alkylaryl sulfonates may be blended with linear alkylbenzene sulfonate (LAS) compositions, to form the blended alkylaromatic sulfonates of some embodiments. These compositions and processes for making them may be tailored to serve a variety of end uses, such as detergents in cleaning solutions or for enhanced oil recovery operations, and/or as low foaming and/or hydrotropic additives in detergent formulations, and the like.Type: ApplicationFiled: August 9, 2017Publication date: March 1, 2018Inventors: Virginia M. Reiner, Jingwen Zhang, Tracie L. Owens, Mosha H. Zhao
-
Publication number: 20180010061Abstract: Systems and methods are provided for processing a feed derived from a renewable source to form oligomerized compounds corresponding to waxes, ketone waxes, and/or lubricant boiling range compounds. The oligomerized compounds derived from the renewable source can have various novel properties relative to waxes and/or lubricant boiling range compounds derived from mineral sources or derived from renewable sources in a conventional manner. The oligomerized compounds can be derived from a renewable source including fatty acids and/or fatty acid derivatives, such as glycerides (including triglycerides) and fatty amides. Optionally but preferably, at least a portion of the fatty acids and/or fatty acid derivatives can include olefinic bonds.Type: ApplicationFiled: June 19, 2017Publication date: January 11, 2018Inventors: Virginia M. REINER, Michel DAAGE, Kun WANG, Chunping WU, Sarvesh K. AGRAWAL
-
Publication number: 20170175152Abstract: Methods are provided for biological conversion of anhydrosugars, such as anhydrosugars found in a pyrolysis oil, to fatty acid alkyl esters. The methods can include use of a genetically modified Escherichia coli (E. coli) bacteria that can convert levoglucosan and/or other anhydrosugars into fatty acid alkyl esters without requiring formation and conversion of an intermediate compound external to the bacteria. Optionally, the methods can be used in combination with methods for production and/or separation of increased amounts of levoglucosan from pyrolysis of biomass.Type: ApplicationFiled: November 29, 2016Publication date: June 22, 2017Inventors: Kelsey M. McNEELY, Virginia M. REINER
-
Publication number: 20170158967Abstract: Systems and methods are provided for pretreatment and upgrading of crude bio oils for further processing and/or use as fuel products. Crude bio oils can be treated by one or more of flash fractionation and thermal cracking to generate fractions suitable for further processing, such as further hydroprocessing. Blending of crude bio oil fractions with mineral feeds can also be used to reduce metals contents to levels suitable for refinery processing.Type: ApplicationFiled: December 2, 2016Publication date: June 8, 2017Inventors: Virginia M. REINER, Rustom M. BILLIMORIA, William G. BORGHARD, William E. LEWIS, John S. BUCHANAN