Patents by Inventor Visarath In

Visarath In has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9664751
    Abstract: A two-dimensional SQIF array and methods for manufacture can include at least two bi-SQUIDs that share an inductance. The bi-SQUIDs can be combined to establish a diamond-shaped cell. A plurality of the diamond shaped cells can be packed tightly together so that each cell shares at least three cell junctions with adjacent cells to establish the SQIF array. Because of the close proximity of the cells, the effect that the mutual inductances each cell has on adjacent cells can be accounted for, as well as the SQIF array boundary conditions along the array edges. To do this, a matrix of differential equations can be solved to provide for the recommended inductance of each bi-SQUID in the SQIF array. Each bi-SQUID can be manufactured with the recommended inductance to result in a SQIF having an increased strength of anti-peak response, but without sacrificing the linearity of the response.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: May 30, 2017
    Assignee: The United States of America, as Represented by the Secretary of the Navy
    Inventors: Susan Anne Elizabeth Berggren, Patrick Longhini, Visarath In, Georgy Prokopenko, Antonio Palacios, Oleg A. Mukhanov
  • Patent number: 9097751
    Abstract: An amplifier and method for improving linear response includes a plurality of N bi-SQUIDs. Each bi-SQUID has a non-uniform bi-SQUID parameter ?i, described by ?i=2?LiIci?0 can be defined for each bi-SQUIDs from i=1 to N, where Li is the loop inductance, ic is the critical current, and ?0 is a flux quantum for each bi-SQUID. The non-uniform bi-SQUIDs can be connected in series or in parallel to establish a Superconducting Quantum Interference Filter (SQIF) array of bi-SQUIDs. Once connected, a mutual inductance between the connected bi-SQUIDs can be established. If the mutual inductance between connected bi-SQUIDs is accounted for, careful manipulation of the critical current or the loop size, or both, of each bi-SQUID can result in extremely uniform behavior (linear response) of the SQIF when considered as a whole, even though the behavior of the element bi-SQUIDs is non-uniform (different ?i, parameters).
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: August 4, 2015
    Assignee: The United States of America, as Represented by the Secretary of the Navy
    Inventors: Patrick Longhini, Visarath In, Anna Leese de Escobar, Antonio Palacios, Oleg Mukhanov
  • Patent number: 8994461
    Abstract: A cascaded oscillator array includes a first oscillator array and a second oscillator array. The first oscillator array includes at least three oscillator elements coupled unidirectionally in a first ring such that the first oscillator array outputs a first oscillating signal. Each of the at least three oscillator elements is coupled to receive a signal from a sensing element. The second oscillator array includes at least three oscillator elements coupled unidirectionally in a second ring such that the second oscillator array outputs a second oscillating signal. A first number of the at least three oscillator elements of the first oscillator array is the same as a second number of the at least three oscillator elements of the second oscillator. Each oscillator element of the at least three oscillator elements of the second oscillator array is coupled to receive an output signal from a single oscillator element of the at least three oscillator elements of the first oscillator.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: March 31, 2015
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Visarath In, Patrick Longhini, Yong (Andy) Kho, Antonio Palacios
  • Publication number: 20150084704
    Abstract: A cascaded oscillator array includes a first oscillator array and a second oscillator array. The first oscillator array includes at least three oscillator elements coupled unidirectionally in a first ring such that the first oscillator array outputs a first oscillating signal. Each of the at least three oscillator elements is coupled to receive a signal from a sensing element. The second oscillator array includes at least three oscillator elements coupled unidirectionally in a second ring such that the second oscillator array outputs a second oscillating signal. A first number of the at least three oscillator elements of the first oscillator array is the same as a second number of the at least three oscillator elements of the second oscillator. Each oscillator element of the at least three oscillator elements of the second oscillator array is coupled to receive an output signal from a single oscillator element of the at least three oscillator elements of the first oscillator.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Inventors: Visarath In, Patrick Longhini, Yong (Andy) Kho, Antonio Palacios
  • Patent number: 8212569
    Abstract: An ambient electric field detector comprising: a collection mechanism disposed to generate a current signal in response to the ambient electric field; an input current mirror operatively coupled to the collection mechanism and disposed to amplify and duplicate the current signal to generate a duplicate signal; and an odd number (i) of at least three nonlinear, over-damped, bi-stable elements coupled uni-directionally in a ring such that the ring of elements oscillates, wherein at least one of the elements has a different initial state than the other elements and each element is disposed to receive the duplicate signal.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: July 3, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Visarath In, Norman Liu, Patrick Longhini, Yong (Andy) Kho, Joseph D. Neff, Adi R. Bulsara, Antonio Palacios
  • Patent number: 8207763
    Abstract: A semiconductor non-linear channelizer device comprises an array of N first order, bi-stable semiconductor circuit cells. The circuit cells are uni-directionally coupled from a first circuit cell to another circuit cell, where N is an integer greater than 1. A signal input trace is coupled to each of the circuit cells and a signal output trace is coupled from each of the circuit cells.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: June 26, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Visarath In, Patrick Anton Longhini, Yong (Andy) An Kho, Joseph D. Neff, Norman Liu
  • Patent number: 8174325
    Abstract: The present invention provides an array of tunable, injection-locking oscillators which are scalable to higher frequencies and measure the entire relevant frequency space simultaneously. The scalable, highly-parallelized, adaptive receiver architecture uses arrays of tunable, injection-locking nonlinear oscillator rings for broad spectrum RF analysis. Three separate and different microelectronic circuit configurations, each having a different type of readout, are described. The embodiments are designed to be incorporated as a subsystem in any type of powered system in which a fast image of the broader spectrum is valuable, when no information about the location of signals in the frequency space is predictable or forthcoming.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: May 8, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Daniel Leung, Joseph Neff, Norman Liu, Visarath In
  • Patent number: 8165557
    Abstract: A system includes at least a first array connected to a second array. The first array includes an odd number, greater than one, of unidirectionally-coupled non-linear first array elements. The second array includes an odd number, greater than one, of unidirectionally-coupled non-linear second array elements. The second array elements are unidirectionally-coupled in a direction opposite the coupling direction of the second array elements. The first array is configured to receive an input signal and down-convert the input signal. The second array is configured to receive the down-converted input signal, further down-convert the down-converted input signal, and output a down-converted output signal. The down-converted output signal is down-converted to a multiple of the frequency of the input signal proportional to the number of arrays of the system. The system may operate at frequencies greater than 1 GHz and may be contained in a microchip or on a printed circuit board.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: April 24, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Visarath In, Patrick Longhini, Yong (Andy) An Kho, Joseph D. Neff, Suketu Naik, Norman Liu
  • Patent number: 8049486
    Abstract: In various embodiments, an apparatus for detecting electric fields is disclosed that includes an array of non-linear elements configured into an oscillator with each coupled to one or more electric-field sensing plates. In various embodiments, an output of the array produces a frequency that varies as a function of an electric field sensed by the one or more electric-field sensing plates.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: November 1, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Visarath In, Adi R. Bulsara, Yong (Andy) An Kho, Antonio Palacios, Salvatore Baglio, Bruno Ando
  • Patent number: 8049570
    Abstract: An electrical/magnetic current sensing system includes a first collection mechanism configured to convert an electric field into surface charge, a second collection mechanism comprising a magnetic reactive material, and a sensor coupled to the first and second collection mechanisms. The sensor comprises an odd number, greater than or equal to three, of unidirectionally-coupled non-linear over-damped bi-stable elements. Each element comprises a resistive load, an operational transconductance amplifier (OTA) with a bipolar junction transistor differential pair, a cross-coupled OTA, and a non-linear OTA. Each element may comprise fully differential inputs and outputs. The sensor may be contained in a microchip or on a printed circuit board. A resident time difference readout device may be connected to the sensor, and may be configured to perform a power spectral density calculation. The sensor may include a resistance to voltage circuit connected between the second collection mechanism and the elements.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: November 1, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Visarath In, Patrick Longhini, Yong (Andy) An Kho, Joseph D. Neff, Antonio Palacios, Norman Liu
  • Patent number: 7902931
    Abstract: A device includes a plurality of channel-capture circuits. Each circuit may include an array of N non-linear oscillators, wherein N?3, circularly connected to each other in series such that unidirectional signal flow occurs between the oscillators. Each circuit may be configured to capture a respective channel signal from a wideband signal containing a plurality of channel signals and convert its captured channel signal to a lower frequency. Each oscillator may include an oscillator input configured to receive an output signal from another oscillator, an oscillator output configured to provide an output for an input of another oscillator, a frequency capture input configured to receive at least a portion of the wideband signal, at least two amplifiers, and a control capacitor coupled to the output of the amplifiers. An analog-to-digital converter may be coupled to the output of each channel-capture circuit.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: March 8, 2011
    Assignee: The United States of America as represened by the Secretary of the Navy
    Inventors: Visarath In, Patrick Longhini, Yong (Andy) An Kho, Joseph D. Neff, Adi R. Bulsara, Frank E. Gordon, Norman Liu, Suketu Naik
  • Patent number: 7898250
    Abstract: An apparatus for sensing and processing a magnetic flux signal comprising: an odd number of at least three fluxgate modules, a summer, and a processor. Each fluxgate module is configured to generate a module response signal upon receiving the magnetic flux signal. The fluxgate modules are circularly coupled to each other such that only one-way signal flow is allowed between them. The summer is configured to sum the response signals from each fluxgate module into a summed signal. The processor is configured to receive and process the summed signal.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: March 1, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Visarath In, Adi R. Bulsara, Yong (Andy) Kho, Joseph D. Neff, Antonio Palacios, Salvatore Baglio, Vincenzo Sacco
  • Patent number: 7777535
    Abstract: In various embodiments, an apparatus for down-converting a first signal having a first frequency to a lower frequency is disclosed. The apparatus can include one or more arrays of N over-damped, bi-stable circuits unidirectionally-coupled from element to element.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: August 17, 2010
    Assignee: United States of America as represented by the Secretary of the Navy
    Inventors: Visarath In, Patrick Longhini, Yong (Andy) An Kho, Joseph D. Neff, Adi R. Bulsara
  • Patent number: 7714671
    Abstract: A target signal analyzer having at least one receiving antenna configured to receive the target signal, and a parallel array of oscillator rings. Each oscillator ring is operatively coupled to receive the target signal from the receiving antenna. Each oscillator ring has an odd number of at least three bistable, nonlinear oscillators circularly coupled to each other such that only one-way signal flow is allowed between the oscillators in each oscillator ring. Each of the oscillator rings is configured to oscillate and thereby produce a response signal only when the target signal frequency is within a designated frequency band. For every designated frequency band in a spectrum of interest, at least one of the oscillator rings is configured to produce a response signal.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: May 11, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Visarath In, Joseph D. Neff, Adi R. Bulsara
  • Publication number: 20090195245
    Abstract: An apparatus for sensing and processing a magnetic flux signal comprising: an odd number of at least three fluxgate modules, a summer, and a processor. Each fluxgate module is configured to generate a module response signal upon receiving the magnetic flux signal. The fluxgate modules are circularly coupled to each other such that only one-way signal flow is allowed between them. The summer is configured to sum the response signals from each fluxgate module into a summed signal. The processor is configured to receive and process the summed signal.
    Type: Application
    Filed: September 21, 2007
    Publication date: August 6, 2009
    Inventors: Visarath In, Adi R. Bulsara, Yong (Andy) Kho, Joseph D. Neff, Antonio Palacios, Salvatore Baglio, Vincenzo Sacco
  • Patent number: 7528606
    Abstract: A coupled non-linear sensor system is provided for sensing a non-sinusoidal time-dependent target signal. The system comprises an odd number, other than one, of interconnected oscillatory sensors for sensing time-dependent changes in an external magnetic flux generated by the non-sinusoidal time-dependent target signal, the sensors coupled to each other by a coupling parameter characterized by a threshold value, so that each of the sensors oscillates in the presence of the non-sinusoidal time-dependent target signal as the coupling parameter exceeds the threshold value.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: May 5, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Visarath In, Antonio Palacios, Yong Ko, Adi R. Bulsara
  • Patent number: 7420366
    Abstract: A sensor system employing a plurality of nonlinear sensors utilizes a coupling network to interconnect the sensors wherein the coupling network inherently induces oscillations in the sensor system. This approach removes the need to provide bias signal generation either onboard the sensors or via a source external to the sensor.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: September 2, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Visarath In, Antonio Palacios, Yong Kho, Adi R. Bulsara
  • Patent number: 7196590
    Abstract: Certain spatio-temporal symmetries induce one array of a two-array coupled network of oscillators to oscillate at N times the frequency of the other array, where N is the number of oscillators in each array.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: March 27, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Visarath In, Yong (Andy) Kho, Joseph D. Neff, Brian K. Meadows, Patrick Longhini, Antonio Palacios
  • Patent number: 7109918
    Abstract: This invention exploits the synchronization properties of coupled, nonlinear oscillators arrays to perform power combining, beam steering, and beam shaping. This architecture utilizes interactions between nonlinear active elements to generate beam patterns. A nonlinear array integrates the signal processing concurrently with the transduction of the signal. This architecture differs fundamentally from passive transducer arrays in three ways: 1) the unit cells are nonlinear, 2) the array purposely couples the unit cells together, and 3) the signal processing (beam steering and shaping) is done via dynamic interactions between unit cells. The architecture extends to both 1- and 2-dimensional arrays.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: September 19, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Brian K. Meadows, Ted H. Heath, Joseph D. Neff, Edgar A. Brown, David W. Fogliatti, Visarath In, Paul Hasler, Steve P. DeWeerth, William L. Ditto, Robert A. York
  • Patent number: 6880400
    Abstract: An array of non-identical oscillators, driven by a common external driving force, is synchronized in phase. An example application is the phase synchronizing of non-identical vibratory gyroscopes to provide enhanced gyroscope sensitivity while minimizing the need for gyroscope proof mass alteration and individual gyroscope electronics.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: April 19, 2005
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: David W. Fogliatti, Brian K. Meadows, Joseph D. Neff, Visarath In, Adi R. Bulsara