Patents by Inventor Vishnu S. Srinivasan

Vishnu S. Srinivasan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8467483
    Abstract: A radio-frequency apparatus includes an integrated circuit. The integrated circuit includes receiver analog circuitry, receiver digital circuitry, a digital-to-analog converter, and a signal selector. The receiver analog circuitry receives radio-frequency signals, and provides a first digital signal. The receiver digital circuitry receives the first digital signal, and provides a second digital signal. The digital-to-analog converter converts the second digital signal into a first analog signal. The signal selector receives the second digital signal and the first analog signal, and selectively provides one of the second digital signal and the first analog signal as an output signal of the integrated circuit.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: June 18, 2013
    Assignee: Silicon Laboratories Inc.
    Inventors: G. Diwakar Vishakhadatta, Donald A. Kerth, Jeffrey W. Scott, Richard T. Behrens, G. Tyson Tuttle, Vishnu S. Srinivasan
  • Patent number: 8224259
    Abstract: A radio-frequency (RF) receiver includes a receiver analog circuitry and a receiver digital circuitry. The receiver analog circuitry resides within a first integrated circuit and the receiver digital circuitry resides within a second integrated circuit. The second integrated circuit couples to the first integrated circuit via a one-bit digital interface. The receiver analog circuitry receives an RF signal and processes the received RF signal to generate a digital signal. The receiver analog circuitry provides the digital signal to the receiver digital circuitry. The receiver digital circuitry includes a digital down-converter circuitry that mixes the digital signal with an intermediate frequency (IF) local oscillator (LO) signal to generate a digital down-converted signal. The receiver digital circuitry also includes a digital filter circuitry that filters the digital down-converted signal to generate a filtered digital signal.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: July 17, 2012
    Assignee: Silicon Laboratories Inc.
    Inventors: Richard T. Behrens, Tod Paulus, Mark S. Spurbeck, Vishnu S. Srinivasan, Donald A. Kerth, Jeffrey W. Scott, G. Tyson Tuttle, G. Diwakar Vishakhadatta
  • Publication number: 20100166124
    Abstract: A radio-frequency (RF) receiver includes a receiver analog circuitry and a receiver digital circuitry. The receiver analog circuitry resides within a first integrated circuit and the receiver digital circuitry resides within a second integrated circuit. The second integrated circuit couples to the first integrated circuit via a one-bit digital interface. The receiver analog circuitry receives an RF signal and processes the received RF signal to generate a digital signal. The receiver analog circuitry provides the digital signal to the receiver digital circuitry. The receiver digital circuitry includes a digital down-converter circuitry that mixes the digital signal with an intermediate frequency (IF) local oscillator (LO) signal to generate a digital down-converted signal. The receiver digital circuitry also includes a digital filter circuitry that filters the digital down-converted signal to generate a filtered digital signal.
    Type: Application
    Filed: March 1, 2010
    Publication date: July 1, 2010
    Inventors: Richard T. Behrens, Tod Paulus, Mark S. Spurbeck, Vishnu S. Srinivasan, Donald A. Kerth, Jeffrey W. Scott, G. Tyson Tuttle, G. Diwakar Vishakhadatta
  • Patent number: 7702362
    Abstract: A radio-frequency (RF) receiver includes a receiver analog circuitry and a receiver digital circuitry. The receiver analog circuitry resides within a first integrated circuit and the receiver digital circuitry resides within a second integrated circuit. The second integrated circuit couples to the first integrated circuit via a one-bit digital interface. The receiver analog circuitry receives an RF signal and processes the received RF signal to generate a digital signal. The receiver analog circuitry provides the digital signal to the receiver digital circuitry. The receiver digital circuitry includes a digital down-converter circuitry that mixes the digital signal with an intermediate frequency (IF) local oscillator (LO) signal to generate a digital down-converted signal. The receiver digital circuitry also includes a digital filter circuitry that filters the digital down-converted signal to generate a filtered digital signal.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: April 20, 2010
    Assignee: Silicon Laboratories Inc.
    Inventors: Richard T. Behrens, Tod Paulus, Mark S. Spurbeck, Vishnu S. Srinivasan, Donald A. Kerth, Jeffrey W. Scott, G. Tyson Tuttle, G. Diwakar Vishakhadatta
  • Patent number: 7548738
    Abstract: A receiver includes a gain stage, a peak detector and a processor. The gain stage provides an output signal, and the peak detector provides a binary indication of whether the output signal has reached a predetermined threshold. The processor controls the gain stage in response to the binary indication.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: June 16, 2009
    Assignee: Silicon Laboratories Inc.
    Inventors: Vishnu S. Srinivasan, G. Tyson Tuttle
  • Patent number: 7471074
    Abstract: An apparatus includes a first voltage reference circuit, a second voltage reference circuit and a third circuit that is coupled to the second voltage reference circuit. The first voltage reference circuit provides a first reference voltage between a terminal of the first voltage reference circuit and a first power line. The second voltage reference circuit provides a second reference voltage between a terminal of the second voltage reference circuit and a second power line that is separate from the first power line. The third circuit is coupled to the second voltage reference circuit to establish a magnitude of the second reference voltage in response to a potential difference between the terminal of the first voltage reference circuit and the second power line.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: December 30, 2008
    Assignee: Silicon Laboratories Inc.
    Inventor: Vishnu S. Srinivasan
  • Patent number: 7426376
    Abstract: An apparatus includes a semiconductor package, a radio receiver and a processor. The radio receiver is located in the semiconductor package and includes at least one gain stage. The processor is located in the semiconductor package to execute stored instructions to control the gain stage(s).
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: September 16, 2008
    Assignee: Silicon Laboratories Inc.
    Inventors: Vishnu S. Srinivasan, G. Tyson Tuttle, Dan B. Kasha, Alessandro Piovaccari
  • Patent number: 7333831
    Abstract: Interchangeable high band low-noise-amplifiers (LNAs) and low band low-noise-amplifiers (LNAs) and related methods are disclosed that greatly enhance the efficiency of designing handsets for different combinations of frequency bands. The input signals to particular pins on a receiver or transceiver integrated circuit (IC) are swappable such that multiple frequency bands can be input to the same input pins thereby allowing for simplified system design. Efficient programmable techniques are also disclosed for controlling a swap mode within communication ICs. These interchangeable or band swappable input paths, for example, can be utilized to allow interchangeability between high band (PCS, DCS) and low band (GSM, E-GSM) inputs for cellular communications.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: February 19, 2008
    Assignee: NXP B.V.
    Inventors: Vishnu S. Srinivasan, Gary B. Levy, Brett O. Mitchelson, Donald A. Kerth, Eric R. Garlepp, G. Tyson Tuttle
  • Patent number: 7242912
    Abstract: Components of a radio-frequency (RF) apparatus including transceiver circuitry and frequency modification circuitry of a crystal oscillator circuit that generates a reference signal with adjustable frequency may be partitioned in a variety of ways, for example, as one or more separate integrated circuits. The frequency modification circuitry may be implemented as part of a crystal oscillator circuit that includes digitally controlled crystal oscillator (“DCXO”) circuitry and a crystal. The frequency modification circuitry may include at least one variable capacitance device and may be employed to generate a reference signal with adjustable frequency. The adjustable reference signal may be provided to other components of the RF apparatus and/or the RF apparatus may be configured to provide the adjustable reference signal to baseband processor circuitry.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: July 10, 2007
    Assignee: Silicon Laboratories Inc.
    Inventors: James Maligeorgos, Augusto M. Marques, Lysander Lim, G. Tyson Tuttle, Aslamali A. Rafi, Tod Paulus, Gregory T. Uehara, Jeffrey W. Scott, Richard T. Behrens, Donald A. Kerth, G. Diwakar Vishakhadatta, Vishnu S. Srinivasan, Caiyi Wang
  • Patent number: 7228109
    Abstract: A radio-frequency receiver circuitry includes a down-converter circuitry, an analog-to-digital converter circuitry, and a DC offset reduction circuitry. The down-converter circuitry accepts a received radio-frequency signal and processes the radio-frequency signal to provide an in-phase down-converted signal and a quadrature down-converted signal to the analog-to-digital converter circuitry. The analog-to-digital converter circuitry converts the in-phase and quadrature down-converted signals to an in-phase digital output signal and a quadrature digital output signal, respectively. The DC offset reduction circuitry couples to the analog-to-digital converter circuitry, and tends to reduce a DC offset transmitted to the in-phase and quadrature digital output signals.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: June 5, 2007
    Assignee: Silicon Laboratories Inc.
    Inventors: Tod Paulus, Donald A. Kerth, Richard T. Behrens, Jeffrey W. Scott, G. Diwakar Vishakhadatta, G. Tyson Tuttle, Vishnu S. Srinivasan
  • Patent number: 7221921
    Abstract: Components of a radio-frequency (RF) apparatus including transceiver circuitry and frequency modification circuitry of a crystal oscillator circuit that generates a reference signal with adjustable frequency may be partitioned in a variety of ways, for example, as one or more separate integrated circuits. The frequency modification circuitry may be implemented as part of a crystal oscillator circuit that includes digitally controlled crystal oscillator (“DCXO”) circuitry and a crystal. The frequency modification circuitry may include at least one variable capacitance device and may be employed to generate a reference signal with adjustable frequency. The adjustable reference signal may be provided to other components of the RF apparatus and/or the RF apparatus may be configured to provide the adjustable reference signal to baseband processor circuitry.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: May 22, 2007
    Assignee: Silicon Laboratories
    Inventors: James Maligeorgos, Augusto M. Marques, Lysander Lim, G. Tyson Tuttle, Aslamali A. Rafi, Tod Paulus, Gregory T. Uehara, Jeffrey W. Scott, Richard T. Behrens, Donald A. Kerth, G. Diwakar Vishakhadatta, Vishnu S. Srinivasan, Caiyi Wang
  • Patent number: 7177610
    Abstract: A low-noise current reference circuitry includes a voltage source, a current source, and a controller. The voltage source generates a reference voltage. The current source provides a low-noise output current in response to a control signal. The controller provides the control signal based at least in part on the relative magnitudes of the reference voltage and a voltage derived from the output current. A low-noise voltage reference circuitry includes a reference voltage source, a voltage source, and a controller. The reference voltage source generates a reference voltage. The voltage source provides a low-noise output voltage in response to a control signal. The controller provides the control signal based at least in part on the relative magnitudes of the output voltage and the reference voltage.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: February 13, 2007
    Assignee: Silicon Laboratories Inc.
    Inventors: Jeffrey W. Scott, G. Diwakar Vishakhadatta, Donald A. Kerth, Richard T. Behrens, G. Tyson Tuttle, Vishnu S. Srinivasan
  • Patent number: 7138858
    Abstract: A buffer circuitry buffers a radio-frequency (RF) signal. The buffer circuitry includes a complementary pair of switches and a power source. The a complementary pair of switches has an input terminal and output terminal. The input terminal of the complementary pair of switches responds to the RF signal. The output terminal of the complementary pair of switches couples to an output of the buffer circuitry. The power source includes a capacitor coupled to a current source. The power source couples to the complementary pair of switches. The power source supplies power to the complementary pair of switches in a manner that the buffer circuitry supplies a substantially constant power level at its output.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: November 21, 2006
    Assignee: Silicon Laboratories, Inc.
    Inventors: Augusto M. Marques, Donald A. Kerth, Richard T. Behrens, Jeffrey W. Scott, G. Diwakar Vishakhadatta, G. Tyson Tuttle, Vishnu S. Srinivasan
  • Patent number: 7092675
    Abstract: A radio-frequency (RF) apparatus capable of transmitting RF signals includes transmitter path circuitry. The transmitter path circuitry includes a voltage-controlled oscillator (VCO) that generates an output signal. The frequency of the output signal of the VCO circuitry is adjustable in response to a first control signal and a second control signal. The transmitter path circuitry also includes a first feedback circuitry and a second feedback circuitry that are responsive to the output signal of the VCO circuitry. The first feedback circuitry provides the first control signal to the VCO circuitry. The first control signal coarsely adjusts the frequency of the output signal of the VCO circuitry to a desired frequency. The second feedback circuitry supplies the second control signal to the VCO circuitry. The second control signal fine tunes the frequency of the output signal of the voltage-controlled oscillator circuitry to the desired frequency.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: August 15, 2006
    Assignee: Silicon Laboratories
    Inventors: Lysander Lim, Caiyi Wang, David R. Welland, Donald A. Kerth, Richard T. Behrens, Jeffrey W. Scott, G. Diwakar Vishakhadatta, G. Tyson Tuttle, Vishnu S. Srinivasan
  • Patent number: 7035611
    Abstract: A radio-frequency (RF) apparatus includes front-end circuitry. The front-end circuitry includes a filter circuitry and an impedance matching circuitry. The filter circuitry has a differential output that has an output impedance. The filter circuitry filters signals outside a signal band of interest. The impedance matching network has a differential input coupled to the output of the filter circuitry. The impedance matching network also has a differential output coupled to a signal processing circuitry. The signal processing circuitry has an input impedance. The impedance matching network matches the input impedance of the signal processing circuitry to the output impedance of the filter circuitry.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: April 25, 2006
    Assignee: Silicon Laboratories Inc.
    Inventors: Eric R. Garlepp, Donald A. Kerth, Richard T. Behrens, Jeffrey W. Scott, G. Diwakar Vishakhadatta, G. Tyson Tuttle, Vishnu S. Srinivasan
  • Patent number: 7031683
    Abstract: A calibration circuitry includes an adjustable capacitor, a voltage generator, a reference voltage generator, and a controller. The reference voltage generator provides a reference voltage. The voltage generator provides a measurement voltage that depends on the capacitance of the adjustable capacitor. The capacitance of the adjustable capacitor varies in response to a control signal. The controller provides the control signal based on the relative values of the reference voltage and the measurement voltage.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: April 18, 2006
    Assignee: Silicon Laboratories Inc.
    Inventors: G. Diwakar Vishakhadatta, Donald A. Kerth, Russell Croman, Jeffrey W. Scott, Richard T. Behrens, G. Tyson Tuttle, Vishnu S. Srinivasan
  • Patent number: 7024221
    Abstract: A radio-frequency (RF) receiver includes a receiver analog circuitry and a receiver digital circuitry coupled together. The receiver analog circuitry receives an RF signal. The receiver analog circuitry processes the received RF signal and generates a digital signal that it provides to the receiver digital circuitry. The receiver digital circuitry includes a digital down-converter circuitry that mixes the digital signal provided by a receiver analog circuitry with a digital intermediate frequency (IF) local oscillator signal to generate a digital down-converted signal. The receiver digital circuitry also includes a digital filter circuitry that filters the digital down-converted signal to generate a filtered digital signal. The digital filter circuitry provides a notch at a frequency that corresponds to a residual DC offset of the receiver analog circuitry.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: April 4, 2006
    Assignee: Silicon Laboratories Inc.
    Inventors: Tod Paulus, Richard T. Behrens, Vishnu S. Srinivasan, Mark S. Spurbeck, Donald A. Kerth, Jeffrey W. Scott, G. Tyson Tuttle, G. Diwakar Vishakhadatta
  • Patent number: 6993314
    Abstract: A radio-frequency (RF) apparatus capable of transmitting RF signals includes transmitter path circuitry. The transmitter path circuitry includes a voltage-controlled oscillator (VCO) circuitry. The VCO circuitry generates a first signal that has a first frequency. A divider circuitry couples to the VCO circuitry and, in response to the first signal, the divider circuitry generates a second signal that has a second frequency. The frequency of the second signal equals the frequency of the first signal divided by a number.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: January 31, 2006
    Assignee: Silicon Laboratories Inc.
    Inventors: Lysander Lim, Caiyi Wang, David R. Welland, Donald A. Kerth, Richard T. Behrens, Jeffrey W. Scott, G. Diwakar Vishakhadatta, G. Tyson Tuttle, Vishnu S. Srinivasan
  • Patent number: 6970717
    Abstract: A radio-frequency (RF) receiver includes a receiver analog circuitry and a receiver digital circuitry. The receiver analog circuitry resides within a first integrated circuit and the receiver digital circuitry resides within a second integrated circuit. The second integrated circuit couples to the first integrated circuit via a one-bit digital interface. The receiver analog circuitry receives an RF signal and processes the received RF signal to generate a digital signal. The receiver analog circuitry provides the digital signal to the receiver digital circuitry. The receiver digital circuitry includes a digital down-converter circuitry that mixes the digital signal with an intermediate frequency (IF) local oscillator (LO) signal to generate a digital down-converted signal. The receiver digital circuitry also includes a digital filter circuitry that filters the digital down-converted signal to generate a filtered digital signal.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: November 29, 2005
    Assignee: Silicon Laboratories Inc.
    Inventors: Richard T. Behrens, Tod Paulus, Mark S. Spurbeck, Vishnu S. Srinivasan, Donald A. Kerth, Jeffrey W. Scott, G. Tyson Tuttle, G. Diwakar Vishakhadatta
  • Publication number: 20040166815
    Abstract: Components of a radio-frequency (RF) apparatus including transceiver circuitry and frequency modification circuitry of a crystal oscillator circuit that generates a reference signal with adjustable frequency may be partitioned in a variety of ways, for example, as one or more separate integrated circuits. The frequency modification circuitry may be implemented as part of a crystal oscillator circuit that includes digitally controlled crystal oscillator (“DCXO”) circuitry and a crystal. The frequency modification circuitry may include at least one variable capacitance device and may be employed to generate a reference signal with adjustable frequency. The adjustable reference signal may be provided to other components of the RF apparatus and/or the RF apparatus may be configured to provide the adjustable reference signal to baseband processor circuitry.
    Type: Application
    Filed: July 31, 2003
    Publication date: August 26, 2004
    Inventors: James Maligeorgos, Augusto M. Marques, Lysander Lim, G. Tyson Tuttle, Aslamali A. Rafi, Tod Paulus, Gregory T. Uehara, Jeffery W. Scott, Richard T. Behrens, Donald A. Kerth, G. Diwakar Vishakhadatta, Vishnu S. Srinivasan, Caiyi Wang