Patents by Inventor Vishwanath Venkataraman

Vishwanath Venkataraman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120122406
    Abstract: A test station may include a test host, a signal generator, and a test chamber. Multiple devices under test (DUTs) may be placed in the test chamber during production testing. Radio-frequency signals may be conveyed from the signal generator to the multiple DUTs using a conducted arrangement through a radio-frequency signal splitter circuit or using a radiated arrangement through an antenna in the test chamber. The signal generator may broadcast initialization downlink signals. The multiple DUTs may synchronize with the initialing downlink signals. The signal generator may broadcast test downlink signals at a target output power level. The multiple DUTs may receive the test downlink signals and compute a corresponding downlink transmission performance level based on the received downlink signals. A given DUT is marked as a passing DUT if the downlink performance level is satisfactory. A given DUT may be retested if the downlink performance level fails design criteria.
    Type: Application
    Filed: January 31, 2011
    Publication date: May 17, 2012
    Inventors: Justin Gregg, Adil Syed, Vishwanath Venkataraman
  • Publication number: 20110256838
    Abstract: Electronic devices with wireless communications capabilities are provided. The electronic device may include storage and processing circuitry, power amplifier circuitry, power supply circuitry, etc. The storage and processing circuitry may direct the power amplifier circuitry to operate using a desired gain mode, in a particular radio channel, and at a given output power level. The power supply circuitry may bias the power amplifier circuitry with a power supply voltage. The performance of the power amplifier circuitry may be characterized by an adjacent channel leakage ratio (ACLR) margin. The power consumption of the power amplifier circuitry may be characterized by a current savings ratio. A cost function may be calculated by taking the product of the ACLR margin and current savings ratio. A minimum point for each cost function curve may be determined. It is desirable to bias the power amplifier circuitry with a supply voltage corresponding to the minimum point.
    Type: Application
    Filed: April 15, 2010
    Publication date: October 20, 2011
    Inventors: David A. Donovan, Justin Gregg, Vishwanath Venkataraman
  • Publication number: 20110237199
    Abstract: Wireless test equipment may be used to perform over-the-air testing of user equipment. The user equipment may contain an antenna and a receiver. The wireless test equipment may contain a call box that performs network-level testing by sending and receiving protocol-compliant network messages. The call box may transmit a radio-frequency test signal at a predetermined power. The antenna in the user equipment may receive the radio-frequency test signal and may provide the received radio-frequency test signal to the input of the receiver. The call box may send a network message such as a code-division-multiple-access intercode handover command to the user equipment to direct the user equipment to measure the received radio-frequency test signal power at the input of the receiver. The measured power may be transmitted to the call box as part of a pilot measurement message indicator, using an intercode handover command, or using other network messages.
    Type: Application
    Filed: March 25, 2010
    Publication date: September 29, 2011
    Inventors: Vishwanath Venkataraman, Justin Gregg, Wassim El-Hassan