Patents by Inventor Vitaliy Nimon

Vitaliy Nimon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11444270
    Abstract: Methods for making solid-state laminate electrode assemblies include methods of forming a solid electrolyte interphase (SEI) by ion implanting nitrogen and/or phosphorous into the glass surface by ion implantation.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: September 13, 2022
    Assignee: POLYPLUS BATTERY COMPANY
    Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz, Richard L. Swisher
  • Publication number: 20220263137
    Abstract: Solid-state laminate electrode assemblies and various methods for making the solid-state laminate electrode assemblies involve a lithium metal layer reactively bonded to a lithium ion conducting sulfide glass layer. During manufacture, highly reactive surfaces of the lithium metal layer and the lithium ion conducting sulfide glass layer are maintained in its substantially unpassivated state until they have been reactively bonded.
    Type: Application
    Filed: November 1, 2021
    Publication date: August 18, 2022
    Applicant: PolyPlus Battery Company
    Inventors: Steven J. Visco, Vitaliy Nimon, Ian Wogan, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz
  • Publication number: 20220045353
    Abstract: Chemically treating ionically conductive sulfide glass solid electrolyte separators or separator layers can improve performance. In particular, treatment involving chemically etching a surface or surface region of the sulfide glass separator to blunt, lessen or remove edge defects or surface flaws, and/or to enhance surface smoothness is cost effective, reliable and well suited for high production environments compared to physical methods of removing scratches or smoothing surfaces, such as mechanical grinding and polishing.
    Type: Application
    Filed: June 4, 2021
    Publication date: February 10, 2022
    Applicant: PolyPlus Battery Company
    Inventors: Steven J. Visco, Vitaliy Nimon, Alexei Petrov, Yevgeniy S. Nimon, Bruce D. Katz
  • Publication number: 20220045328
    Abstract: Batteries, component structures and manufacturing methods, in particular including a glassy embedded battery electrode assembly having a composite material structure composed of interpenetrating material components including a porous electroactive network including a solid electroactive material, and a continuous glassy medium including a Li ion conducting sulfide glass, can achieve enhanced power output, reduced charging time and/or improved cycle life.
    Type: Application
    Filed: June 4, 2021
    Publication date: February 10, 2022
    Applicant: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Bruce D. Katz, Vitaliy Nimon
  • Publication number: 20220045352
    Abstract: Battery component structures and manufacturing methods for solid-state battery cells include a unitary Li ion conducting sulfide glass solid electrolyte structure that serves as the basic building block around which a solid-state battery cell can be fabricated. The unitary glass structure approach can leverage precision controlled high throughput processes from the semiconductor industry that have been inventively modified as disclosed herein for processing a sulfide glass solid electrolyte substrate into a unitary Li ion conducting glass structure, for example, by using etching and lithographic photoresist formulations and methods. The glass substrate may be precision engineered to effectuate a dense glass portion and a porous glass portion that can be characterized as sublayers having predetermined thicknesses.
    Type: Application
    Filed: June 4, 2021
    Publication date: February 10, 2022
    Applicant: PolyPlus Battery Company
    Inventors: Steven J. Visco, Vitaliy Nimon, Valentina Loginova, Yevgeniy S. Nimon, Bruce D. Katz
  • Patent number: 11239495
    Abstract: Nanofilm-encapsulated sulfide glass solid electrolyte structures and methods for making the encapsulated glass structures involve a lithium ion conducting sulfide glass sheet encapsulated on its opposing major surfaces by a continuous and conformal nanofilm made by atomic layer deposition (ALD). During manufacture, the reactive surfaces of the sulfide glass sheet are protected from deleterious reaction with ambient moisture, and the nanofilm can be configured to provide additional performance advantages, including enhanced mechanical strength and improved chemical resistance.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: February 1, 2022
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz
  • Patent number: 11171364
    Abstract: Solid-state laminate electrode assemblies and various methods for making the solid-state laminate electrode assemblies involve a lithium metal layer reactively bonded to a lithium ion conducting sulfide glass layer. During manufacture, highly reactive surfaces of the lithium metal layer and the lithium ion conducting sulfide glass layer are maintained in its substantially unpassivated state until they have been reactively bonded.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: November 9, 2021
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Vitaliy Nimon, Ian Wogan, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz
  • Publication number: 20210320328
    Abstract: Preparation of anhydrous lithium sulfide (Li2S) purified suitably for applications in advanced batteries, and, in particular, for synthesis of solid electrolytes based on Li2S, including sulfide solid electrolytes of the type that may be described as crystalline (e.g., polycrystalline), amorphous (e.g., glass) and combinations thereof, such as sulfide glass-ceramic solid electrolyte materials.
    Type: Application
    Filed: March 16, 2021
    Publication date: October 14, 2021
    Applicant: PolyPlus Battery Company
    Inventors: Steven J. Visco, Alexei Petrov, Valentina Loginova, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz
  • Publication number: 20210218055
    Abstract: A sulfide glass solid electrolyte sheet can be protected from reaction with moisture by a thin metal layer coating converted to a thin electrochemically functional and protective compound layer. The converted protective compound layer is electrochemically functional in that it allows for through transport of lithium ions.
    Type: Application
    Filed: January 14, 2021
    Publication date: July 15, 2021
    Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz
  • Publication number: 20210126236
    Abstract: Methods for making solid-state laminate electrode assemblies include methods of forming a solid electrolyte interphase (SEI) by ion implanting nitrogen and/or phosphorous into the glass surface by ion implantation.
    Type: Application
    Filed: October 2, 2020
    Publication date: April 29, 2021
    Applicant: PolyPlus Battery Company
    Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz, Richard L. Swisher
  • Publication number: 20210111427
    Abstract: A sulfide glass solid electrolyte sheet can be protected during Li by a thin material layer coating for providing that protection (i.e., protective coating).
    Type: Application
    Filed: October 9, 2020
    Publication date: April 15, 2021
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Vitaliy Nimon, Bruce D. Katz
  • Publication number: 20210098818
    Abstract: A lithium ion-conductive solid electrolyte including a freestanding inorganic vitreous sheet of sulfide-based lithium ion conducting glass is capable of high performance in a lithium metal battery by providing a high degree of lithium ion conductivity while being highly resistant to the initiation and/or propagation of lithium dendrites. Such an electrolyte is also itself manufacturable, and readily adaptable for battery cell and cell component manufacture, in a cost-effective, scalable manner.
    Type: Application
    Filed: October 1, 2020
    Publication date: April 1, 2021
    Applicant: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Vitaliy Nimon
  • Publication number: 20210098819
    Abstract: A standalone lithium ion-conductive solid electrolyte including a freestanding inorganic vitreous sheet of sulfide-based lithium ion conducting glass is capable of high performance in a lithium metal battery by providing a high degree of lithium ion conductivity while being highly resistant to the initiation and/or propagation of lithium dendrites. Such an electrolyte is also itself manufacturable, and readily adaptable for battery cell and cell component manufacture, in a cost-effective, scalable manner.
    Type: Application
    Filed: October 1, 2020
    Publication date: April 1, 2021
    Applicant: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Vitaliy Nimon
  • Publication number: 20200395633
    Abstract: Solid-state laminate electrode assemblies and various methods for making the solid-state laminate electrode assemblies involve a lithium metal layer reactively bonded to a lithium ion conducting sulfide glass layer. During manufacture, highly reactive surfaces of the lithium metal layer and the lithium ion conducting sulfide glass layer are maintained in its substantially unpassivated state until they have been reactively bonded.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 17, 2020
    Inventors: Steven J. Visco, Vitaliy Nimon, Ian Wogan, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz
  • Patent number: 10868293
    Abstract: Methods for making solid-state laminate electrode assemblies include methods of forming a solid electrolyte interphase (SEI) by ion implanting nitrogen and/or phosphorous into the glass surface by ion implantation.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: December 15, 2020
    Assignee: POLYPLUS BATTERY COMPANY
    Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz, Richard L. Swisher
  • Patent number: 10862171
    Abstract: Methods for making solid-state laminate electrode assemblies include methods to prevent devitrifying and damaging a lithium ion conducting sulfide glass substrate during thermal evaporation of lithium metal, as well as methods for making thin extruded lithium metal foils.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: December 8, 2020
    Assignee: POLYPLUS BATTERY COMPANY
    Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz, Richard L. Swisher
  • Patent number: 10840546
    Abstract: A lithium ion-conductive solid electrolyte including a freestanding inorganic vitreous sheet of sulfide-based lithium ion conducting glass is capable of high performance in a lithium metal battery by providing a high degree of lithium ion conductivity while being highly resistant to the initiation and/or propagation of lithium dendrites. Such an electrolyte is also itself manufacturable, and readily adaptable for battery cell and cell component manufacture, in a cost-effective, scalable manner.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: November 17, 2020
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Vitaliy Nimon
  • Patent number: 10840547
    Abstract: Nanofilm-encapsulated sulfide glass solid electrolyte structures and methods for making the encapsulated glass structures involve a lithium ion conducting sulfide glass sheet encapsulated on its opposing major surfaces by a continuous and conformal nanofilm made by atomic layer deposition (ALD). During manufacture, the reactive surfaces of the sulfide glass sheet are protected from deleterious reaction with ambient moisture, and the nanofilm can be configured to provide additional performance advantages, including enhanced mechanical strength and improved chemical resistance.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: November 17, 2020
    Assignee: POLYPLUS BATTERY COMPANY
    Inventors: Steven J. Visco, Vitaliy Nimon, Yevgeniy S. Nimon, Bruce D. Katz
  • Patent number: 10833361
    Abstract: A standalone lithium ion-conductive solid electrolyte including a freestanding inorganic vitreous sheet of sulfide-based lithium ion conducting glass is capable of high performance in a lithium metal battery by providing a high degree of lithium ion conductivity while being highly resistant to the initiation and/or propagation of lithium dendrites. Such an electrolyte is also itself manufacturable, and readily adaptable for battery cell and cell component manufacture, in a cost-effective, scalable manner.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: November 10, 2020
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Vitaliy Nimon
  • Publication number: 20200259212
    Abstract: A lithium ion-conductive solid electrolyte including a freestanding inorganic vitreous sheet of sulfide-based lithium ion conducting glass is capable of high performance in a lithium metal battery. Such an electrolyte is also manufacturable, and readily adaptable for battery cell and cell component manufacture, in a cost-effective, scalable manner using an automated machine based system, apparatus and methods based on inline spectrophotometry to assess and inspect the quality of such vitreous solid electrolyte sheets and associated components. Suitable manufacturing methods can involve multi-stage thinning of a sulfide glass preform that includes a first thinning operation that involves applying a compressive force onto the preform to form a glass sheet and a second thinning operation that involves applying a tensile force on the as-formed glass sheet (e.g.
    Type: Application
    Filed: December 19, 2019
    Publication date: August 13, 2020
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Bruce D. Katz, Vitaliy Nimon