Patents by Inventor Vitaliy Shklover

Vitaliy Shklover has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190302628
    Abstract: A cost-effective method for repairing reflective optical elements for EUV lithography. These optical elements (60) have a substrate (61) and a coating (62) that reflects at a working wavelength in the range between 5 nm and 20 nm and is damaged as a result of formation of hydrogen bubbles. The method includes: localizing a damaged area (63, 64, 65, 66) in the coating (62) and covering the damaged area (63, 64, 65, 66) with one or more materials having low hydrogen permeability by applying a cover element to the damaged area. The cover element is formed of a surface structure, a convex or concave surface, or a coating corresponding to the coating of the reflective optical element, or a combination thereof. The method is particularly suitable for collector mirrors (70) for EUV lithography. After the repair, the optical elements have cover elements (71, 72, 73).
    Type: Application
    Filed: June 6, 2019
    Publication date: October 3, 2019
    Inventors: Robert MEIER, Holger KIEREY, Christof JALICS, Eric EVA, Ralf WINTER, Arno SCHMITTNER, Alexey KUZNETSOV, Vitaliy SHKLOVER, Christoph NOTTBOHM, Wolfgang MERKEL
  • Publication number: 20190171108
    Abstract: In order to prevent delamination of a reflective coating from the substrate under the influence of reactive hydrogen, a reflective optical element (50) for EUV lithography is provided, which has a substrate (51) and a reflective coating (54) for reflecting radiation in the wavelength range of 5 nm to 20 nm. A functional layer (60) is arranged between the reflective coating (54) and the substrate (51). With the functional layer, the concentration of hydrogen in atom % at the side of the substrate facing the reflective coating is reduced by at least a factor of 2.
    Type: Application
    Filed: January 25, 2019
    Publication date: June 6, 2019
    Inventors: Dirk Heinrich EHM, Vitaliy SHKLOVER, Irene AMENT, Stefan-Wolfgang SCHMIDT, Moritz BECKER, Stefan WIESNER, Diana URICH, Robert MEIER, Ralf WINTER, Christof JALICS, Holger KIEREY, Eric EVA
  • Publication number: 20190137668
    Abstract: An optical grating (8) includes a substrate (9), on the surface (9a) of which a periodic structure (10) is formed that is embodied to diffract incident radiation (11), in particular incident EUV radiation, with a specified wavelength (??) into a predetermined order of diffraction, in particular into the first order of diffraction (m=+1). The optical grating also has a coating (12) applied onto the periodic structure with at least one layer (13, 14) that is embodied to suppress the diffraction of the incident radiation into at least one higher order of diffraction (m=+2, . . . ) than the predetermined order of diffraction.
    Type: Application
    Filed: January 3, 2019
    Publication date: May 9, 2019
    Inventors: Sebastian BRUECK, Michael GERHARD, Vitaliy SHKLOVER
  • Publication number: 20190035512
    Abstract: Treating a reflective optical element (104) for the EUV wavelength range that has a reflective coating on a substrate. The reflective optical element in a holder (106) is irradiated with at least one radiation pulse of a radiation source (102) having a duration of between 1 ?s and 1 s. At least one radiation source (102) and the reflective optical element move relative to one another. Preferably, this is carried out directly after applying the reflective coating in a coating chamber (100). Reflective optical elements of this type are suitable in particular for use in EUV lithography or in EUV inspection of masks or wafers, for example.
    Type: Application
    Filed: July 31, 2018
    Publication date: January 31, 2019
    Inventors: Christian Grasse, Martin Hermann, Stephan Six, Joern WEBER, Ralf Winter, Oliver Dier, Vitaliy Shklover, Kerstin Hild, Sebastian Strobel
  • Publication number: 20180196362
    Abstract: In order to make possible both good laser resistance and good antireflection properties, an optical element, in particular for UV lithography, comprising a substrate and a coating on the substrate having at least four layers, is proposed, wherein a first layer comprising a low refractive index inorganic fluoride compound is arranged on the substrate, a layer comprising an inorganic oxide-containing compound is arranged as a layer the most distant from the substrate, and at least two further layers each comprising an inorganic fluoride compound or an inorganic oxide-containing compound are arranged alternately between the first and the most distant layers.
    Type: Application
    Filed: March 6, 2018
    Publication date: July 12, 2018
    Inventors: Vitaliy Shklover, Michael Schall, Johannes Kraus, Oliver Gloeckl, Jeffrey Erxmeyer, Horst Feldermann, Konstantin Forcht, Ute Heinemeyer
  • Patent number: 9933711
    Abstract: In order to make possible both good laser resistance and good antireflection properties, an optical element, in particular for UV lithography, comprising a substrate and a coating on the substrate having at least four layers, is proposed, wherein a first layer comprising a low refractive index inorganic fluoride compound is arranged on the substrate, a layer comprising an inorganic oxide-containing compound is arranged as a layer the most distant from the substrate, and at least two further layers each comprising an inorganic fluoride compound or an inorganic oxide-containing compound are arranged alternately between the first and the most distant layers.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: April 3, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Vitaliy Shklover, Michael Schall, Johannes Kraus, Oliver Gloeckl, Jeffrey Erxmeyer, Horst Feldermann, Konstantin Forcht, Ute Heinemeyer
  • Patent number: 9703209
    Abstract: An optical element comprises a reflecting coating on a substrate. The reflecting coating contains boron and can have a thickness of more than 50 nm.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: July 11, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Vitaliy Shklover
  • Publication number: 20150009480
    Abstract: An optical element comprises a reflecting coating on a substrate. The reflecting coating contains boron and can have a thickness of more than 50 nm.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 8, 2015
    Inventor: Vitaliy Shklover
  • Publication number: 20140211181
    Abstract: In order to make possible both good laser resistance and good antireflection properties, an optical element, in particular for UV lithography, comprising a substrate and a coating on the substrate having at least four layers, is proposed, wherein a first layer comprising a low refractive index inorganic fluoride compound is arranged on the substrate, a layer comprising an inorganic oxide-containing compound is arranged as a layer the most distant from the substrate, and at least two further layers each comprising an inorganic fluoride compound or an inorganic oxide-containing compound are arranged alternately between the first and the most distant layers.
    Type: Application
    Filed: March 27, 2014
    Publication date: July 31, 2014
    Inventors: Vitaliy Shklover, Michael Schall, Johannes Kraus, Oliver Gloeckl, Jeffrey Erxmeyer, Horst Feldermann, Konstantin Forcht, Ute Heinemeyer
  • Patent number: 7944615
    Abstract: An optical system for shaping an incoming beam having a divergence with an angular distribution at least in a first direction comprises at least one angle selective optical element for clipping the angular distribution in the at least first direction. The approach according to the present invention bases on using an angle-selective device operated by the principle of total internal reflection to reduce divergence of the incoming beam, in contrast to a spatially-selective device as for example a field-stop or slit. The method according to the present invention has the advantage that no physical sharp edges have to be exposed at high energy densities. Thus, thermal impact and demands on the optical elements to withstand a high power laser beam are significantly reduced.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: May 17, 2011
    Assignee: Carl Zeiss Laser Optics GmbH
    Inventors: Vitaliy Shklover, Holger Muenz, Michel Le Maire, Christian Hoess
  • Patent number: 7629572
    Abstract: The disclosure relates to a light beam intensity non-uniformity correction device that includes an optical element having a light entrance face with an antireflective property. According to the invention the antireflective property is locally amended in order to enhance light beam intensity uniformity.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: December 8, 2009
    Assignee: Carl Zeiss Laser Optics GmbH
    Inventors: Vitaliy Shklover, Holger Kierey, Holger Muenz, Michel Le Maire, Bernhard Weigl
  • Publication number: 20090244712
    Abstract: An optical system for shaping an incoming beam having a divergence with an angular distribution at least in a first direction comprises at least one angle selective optical element (26,28) for clipping the angular distribution in the at least first direction. The approach according to the present invention bases on using an angle-selective device (25,32) operated by the principle of total internal reflection to reduce divergence of the incoming beam, in contrast to a spatially-selective device as for example a field-stop or slit. The method according to the present invention has the advantage that no physical sharp edges have to be exposed at high energy densities. Thus, thermal impact and demands on the optical elements to withstand a high power laser beam are significantly reduced.
    Type: Application
    Filed: August 18, 2008
    Publication date: October 1, 2009
    Applicant: Carl Zeiss Laser Optics GmbH
    Inventors: Vitaliy Shklover, Holger Muenz, Michel Le Maire, Christian Hoess
  • Publication number: 20090002833
    Abstract: An optical system for shaping an incoming beam having a divergence with an angular distribution at least in a first direction comprises at least one angle selective optical element for clipping the angular distribution in the at least first direction. The approach according to the present invention bases on using an angle-selective device operated by the principle of total internal reflection to reduce divergence of the incoming beam, in contrast to a spatially-selective device as for example a field-stop or slit. The method according to the present invention has the advantage that no physical sharp edges have to be exposed at high energy densities. Thus, thermal impact and demands on the optical elements to withstand a high power laser beam are significantly reduced.
    Type: Application
    Filed: December 20, 2006
    Publication date: January 1, 2009
    Applicant: CARL ZEISS SMT AG
    Inventors: Vitaliy Shklover, Holger Muenz, Michel Le Maire, Christian Hoess
  • Patent number: 7471455
    Abstract: Systems and methods are disclosed for shaping a laser beam for interaction with a film in which the laser beam travels along a beam path and defines a short-axis and a long-axis. In one aspect, the system may include a first short-axis element having an edge positioned at a distance, d1, along the beam path from the film and a second short-axis element having an edge positioned at a distance, d2, along the beam path from the film, with d2<d1. An optic may be positioned along the beam path between the second element and the film for focusing the beam in the short-axis for interaction with the film. In another aspect, a system may be provided having a mechanism operative to selectively adjust the curvature of one or both of the edges of the short-axis element.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: December 30, 2008
    Assignee: Cymer, Inc.
    Inventors: Palash P. Das, Albert P. Cefalo, David S. Knowles, Vitaliy Shklover, Holger Muenz
  • Publication number: 20080272275
    Abstract: The disclosure relates to a light beam intensity non-uniformity correction device that includes an optical element having a light entrance face with an antireflective property. According to the invention the antireflective property is locally amended in order to enhance light beam intensity uniformity.
    Type: Application
    Filed: May 5, 2006
    Publication date: November 6, 2008
    Inventors: Vitaliy Shklover, Holger Kierey, Holger Muenz, Michel Le Maire, Bernhard Weigl
  • Publication number: 20070097511
    Abstract: Systems and methods are disclosed for shaping a laser beam for interaction with a film in which the laser beam travels along a beam path and defines a short-axis and a long-axis. In one aspect, the system may include a first short-axis element having an edge positioned at a distance, d1, along the beam path from the film and a second short-axis element having an edge positioned at a distance, d2, along the beam path from the film, with d2<d1. An optic may be positioned along the beam path between the second element and the film for focusing the beam in the short-axis for interaction with the film. In another aspect, a system may be provided having a mechanism operative to selectively adjust the curvature of one or both of the edges of the short-axis element.
    Type: Application
    Filed: October 28, 2005
    Publication date: May 3, 2007
    Applicant: Cymer, Inc.
    Inventors: Palash Das, Albert Cefalo, David Knowles, Vitaliy Shklover, Holger Muenz