Patents by Inventor Vitaly Surazhsky
Vitaly Surazhsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240283902Abstract: An example apparatus includes: a camera to record an image; memory to store instructions; and a processor in circuit with the memory, the processor to execute the instructions to: determine a depth based on: (a) the image and (b) a calibration parameter of the camera; and adjust the calibration parameter based on a temperature of the camera and the depth.Type: ApplicationFiled: April 16, 2024Publication date: August 22, 2024Inventors: Aviad Zabatani, Sagy Bareket, Ohad Menashe, Erez Sperling, Alex Bronstein, Michael Bronstein, Ron Kimmel, Vitaly Surazhsky
-
Patent number: 11973923Abstract: An example apparatus includes: a camera to record an image; memory to store instructions; and a processor in circuit with the memory, the processor to execute the instructions to: determine a depth based on: (a) the image and (b) a calibration parameter of the camera; and adjust the calibration parameter based on a temperature of the camera and the depth.Type: GrantFiled: September 2, 2022Date of Patent: April 30, 2024Assignee: Intel CorporationInventors: Aviad Zabatani, Sagy Bareket, Ohad Menashe, Erez Sperling, Alex Bronstein, Michael Bronstein, Ron Kimmel, Vitaly Surazhsky
-
Publication number: 20230070217Abstract: An example apparatus includes: a camera to record an image; memory to store instructions; and a processor in circuit with the memory, the processor to execute the instructions to: determine a depth based on: (a) the image and (b) a calibration parameter of the camera; and adjust the calibration parameter based on a temperature of the camera and the depth.Type: ApplicationFiled: September 2, 2022Publication date: March 9, 2023Inventors: Aviad Zabatani, Sagy Bareket, Ohad Menashe, Erez Sperling, Alex Bronstein, Michael Bronstein, Ron Kimmel, Vitaly Surazhsky
-
Publication number: 20220373689Abstract: Example range estimation apparatus disclosed herein are to estimate a signal power parameter and a noise power parameter of a light detecting and ranging (LIDAR) system based on first data to be output from a light capturing device of the LIDAR system. Disclosed example range estimation apparatus are also to estimate a propagation delay associated with second data output from the light capturing device, the second data associated with a modulated light beam projected by the LIDAR system, the propagation delay estimated based on templates corresponding to different possible propagation delays, the templates based on the signal power parameter and the noise power parameter.Type: ApplicationFiled: July 25, 2022Publication date: November 24, 2022Inventors: Michael Bronstein, Ron Kimmel, Alex Bronstein, Ohad Menashe, Erez Sperling, Aviad Zabatani, Vitaly Surazhsky
-
Patent number: 11438569Abstract: An example apparatus includes: a camera to record an image; memory to store instructions; and a processor in circuit with the memory, the processor to execute the instructions to: determine a depth based on: (a) the image and (b) a calibration parameter of the camera; and adjust the calibration parameter based on a temperature of the camera and the depth.Type: GrantFiled: August 3, 2020Date of Patent: September 6, 2022Assignee: Intel CorporationInventors: Aviad Zabatani, Sagy Bareket, Ohad Menashe, Erez Sperling, Alex Bronstein, Michael Bronstein, Ron Kimmel, Vitaly Surazhsky
-
Patent number: 11422263Abstract: Example range estimation apparatus disclosed herein include a first signal processor to estimate a signal power parameter and a noise power parameter of a LIDAR system based on first data to be output from a light capturing device of the LIDAR system. Disclosed example range estimation apparatus also include a second signal processor to generate templates corresponding to different possible propagation delays associated with second data to be output from the light capturing device, the second data associated with a modulated light beam projected by the LIDAR system, the templates generated based on the signal power parameter and the noise power parameter, and the second data to have a higher sampling rate and a lower quantization resolution than the first data. In some examples, the second signal processor is also to determine, based on the templates, an estimated propagation delay associated with the second data.Type: GrantFiled: December 23, 2020Date of Patent: August 23, 2022Assignee: Intel CorporationInventors: Michael Bronstein, Ron Kimmel, Alex Bronstein, Ohad Menashe, Erez Sperling, Aviad Zabatani, Vitaly Surazhsky
-
Publication number: 20210195167Abstract: An example apparatus includes: a camera to record an image; memory to store instructions; and a processor in circuit with the memory, the processor to execute the instructions to: determine a depth based on: (a) the image and (b) a calibration parameter of the camera; and adjust the calibration parameter based on a temperature of the camera and the depth.Type: ApplicationFiled: August 3, 2020Publication date: June 24, 2021Inventors: Aviad Zabatani, Sagy Bareket, Ohad Menashe, Erez Sperling, Alex Bronstein, Michael Bronstein, Ron Kimmel, Vitaly Surazhsky
-
Publication number: 20210116569Abstract: Example range estimation apparatus disclosed herein include a first signal processor to estimate a signal power parameter and a noise power parameter of a LIDAR system based on first data to be output from a light capturing device of the LIDAR system. Disclosed example range estimation apparatus also include a second signal processor to generate templates corresponding to different possible propagation delays associated with second data to be output from the light capturing device, the second data associated with a modulated light beam projected by the LIDAR system, the templates generated based on the signal power parameter and the noise power parameter, and the second data to have a higher sampling rate and a lower quantization resolution than the first data. In some examples, the second signal processor is also to determine, based on the templates, an estimated propagation delay associated with the second data.Type: ApplicationFiled: December 23, 2020Publication date: April 22, 2021Inventors: Michael Bronstein, Ron Kimmel, Alex Bronstein, Ohad Menashe, Erez Sperling, Aviad Zabatani, Vitaly Surazhsky
-
Patent number: 10927969Abstract: A method and apparatus for auto range control are described. In one embodiment, the apparatus comprises a projector configured to project a sequence of light patterns on an object; a first camera configured to capture a sequence of images of the object illuminated with the projected light patterns; a controller coupled to the projector and first camera and operable to receive the sequence of images and perform range control by controlling power of the sequence of light patterns being projected on the object and exposure time of a camera based on information obtained from the sequence of images captured by the camera.Type: GrantFiled: September 11, 2019Date of Patent: February 23, 2021Assignee: Intel CorporationInventors: Aviad Zabatani, Erez Sperling, Ofir Mulla, Ron Kimmel, Alex Bronstein, Michael Bronstein, David H. Silver, Ohad Menashe, Vitaly Surazhsky
-
Patent number: 10877154Abstract: Example range estimation apparatus disclosed herein include a first signal processor to process first data output from a light capturing device of a LIDAR system to estimate signal and noise power parameters of the LIDAR system. Disclosed example range estimation apparatus also include a second signal processor to generate templates corresponding to different possible propagation delays associated with second data output from the light capturing device while a modulated light beam is projected by the LIDAR system, the templates generated based on the signal and noise power parameters, and the second data having a higher sampling rate and a lower quantization resolution than the first data. In some examples, the second signal processor also cross-correlates the templates with the second data to determine an estimated propagation delay associated with the second data, the estimated propagation delay convertible to an estimated range to an object that reflected the modulated light beam.Type: GrantFiled: March 27, 2018Date of Patent: December 29, 2020Assignee: Intel CorporationInventors: Michael Bronstein, Ron Kimmel, Alex Bronstein, Ohad Menashe, Erez Sperling, Aviad Zabatani, Vitaly Surazhsky
-
Patent number: 10775501Abstract: Arrangements (e.g., apparatus, system, method, article of manufacture) for reconstructing a depth image of a scene. Some embodiments include: a processor; and a non-transitory computer readable medium to store a set of instructions for execution by the processor, the set of instructions to cause the processor to perform various operations. Operations include: collecting multiple data sets for a code-modulated light pulse reflected from an object in a scene, with each data set associated with a direction in a set of directions for the reflected code-modulated light pulse; assigning a fitness value to each data set based on one or more parameters of a model; and reconstructing a depth image providing a depth at each direction based on a corresponding data set and fitness value, the depth to correspond with a round-trip delay time of the code-modulated light pulse.Type: GrantFiled: June 1, 2017Date of Patent: September 15, 2020Assignee: INTEL CORPORATIONInventors: Alex Bronstein, Michael Bronstein, David H. Silver, Ron Kimmel, Erez Sperling, Vitaly Surazhsky, Aviad Zabatani, Ohad Menashe
-
Patent number: 10735713Abstract: An example apparatus includes: a camera to record an image; memory to store instructions; and a processor in circuit with the memory, the processor to execute the instructions to: determine a depth based on: (a) the image and (b) a calibration parameter of the camera; and adjust the calibration parameter based on a temperature of the camera and the depth.Type: GrantFiled: June 24, 2019Date of Patent: August 4, 2020Assignee: Intel CorporationInventors: Aviad Zabatani, Sagy Bareket, Ohad Menashe, Erez Sperling, Alex Bronstein, Michael Bronstein, Ron Kimmel, Vitaly Surazhsky
-
Patent number: 10645309Abstract: In accordance with disclosed embodiments, there are provided systems, methods, and apparatuses for implementing maximum likelihood image binarization in a coded light range camera.Type: GrantFiled: November 6, 2015Date of Patent: May 5, 2020Assignee: Intel CorporationInventors: Alexander Bronstein, Aviad Zabatani, Ron Kimmel, Michael Bronstein, Erez Sperling, Vitaly Surazhsky
-
Publication number: 20200072367Abstract: A method and apparatus for auto range control are described. In one embodiment, the apparatus comprises a projector configured to project a sequence of light patterns on an object; a first camera configured to capture a sequence of images of the object illuminated with the projected light patterns; a controller coupled to the projector and first camera and operable to receive the sequence of images and perform range control by controlling power of the sequence of light patterns being projected on the object and exposure time of a camera based on information obtained from the sequence of images captured by the camera.Type: ApplicationFiled: September 11, 2019Publication date: March 5, 2020Applicant: INTEL CORPORATIONInventors: Aviad Zabatani, Erez Sperling, Ofir Mulla, Ron Kimmel, Alex Bronstein, Michael Bronstein, David H. Silver, Ohad Menashe, Vitaly Surazhsky
-
Patent number: 10540784Abstract: An example apparatus for calibrating texture cameras includes an image receiver to receive a depth image from a depth camera and a color image from a texture camera. The apparatus also includes a feature extractor to extract features from the depth image and the color image. The apparatus further includes a feature tester to detect that the extracted features from the depth image and the color image exceed a quality threshold. The apparatus includes a misalignment detector to detect a misalignment between the extracted features from depth image and the extracted features from color image exceeds a misalignment threshold. The apparatus also further includes a calibrator to modify calibration parameters for the texture camera to reduce the detected misalignment between the extracted features from the depth image and the extracted features from the color image below a misalignment threshold.Type: GrantFiled: April 28, 2017Date of Patent: January 21, 2020Assignee: Intel CorporationInventors: Vitaly Surazhsky, Michael Bronstein, Alex Bronstein, Aviad Zabatani, Erez Sperling, Ohad Menashe, David Haim Silver
-
Publication number: 20190379879Abstract: An example apparatus includes: a camera to record an image; memory to store instructions; and a processor in circuit with the memory, the processor to execute the instructions to: determine a depth based on: (a) the image and (b) a calibration parameter of the camera; and adjust the calibration parameter based on a temperature of the camera and the depth.Type: ApplicationFiled: June 24, 2019Publication date: December 12, 2019Inventors: Aviad Zabatani, Sagy Bareket, Ohad Menashe, Erez Sperling, Alex Bronstein, Michael Bronstein, Ron Kimmel, Vitaly Surazhsky
-
Patent number: 10451189Abstract: A method and apparatus for auto range control are described. In one embodiment, the apparatus comprises a projector configured to project a sequence of light patterns on an object; a first camera configured to capture a sequence of images of the object illuminated with the projected light patterns; a controller coupled to the projector and first camera and operable to receive the sequence of images and perform range control by controlling power of the sequence of light patterns being projected on the object and exposure time of a camera based on information obtained from the sequence of images captured by the camera.Type: GrantFiled: October 11, 2017Date of Patent: October 22, 2019Assignee: Intel CorporationInventors: Aviad Zabatani, Erez Sperling, Ofir Mulla, Ron Kimmel, Alex Bronstein, Michael Bronstein, David H. Silver, Ohad Menashe, Vitaly Surazhsky
-
Patent number: 10390002Abstract: A method and apparatus for performing temperature compensation for thermal distortions in a camera system. In one embodiment, the system comprises a first camera configured to capture a sequence of images of the object; a second device; a processing unit to receive the sequence of images and determine depth information in response to parameters of the camera and the second device; one or more temperature sensors; and a thermal correction unit responsive to temperature information from the one or more temperature sensors to adjust one or more of the calibration parameters of the first camera and the second device.Type: GrantFiled: November 7, 2017Date of Patent: August 20, 2019Assignee: Intel CorporationInventors: Aviad Zabatani, Sagy Bareket, Ohad Menashe, Erez Sperling, Alex Bronstein, Michael Bronstein, Ron Kimmel, Vitaly Surazhsky
-
Publication number: 20190049586Abstract: Example range estimation apparatus disclosed herein include a first signal processor to process first data output from a light capturing device of a LIDAR system to estimate signal and noise power parameters of the LIDAR system. Disclosed example range estimation apparatus also include a second signal processor to generate templates corresponding to different possible propagation delays associated with second data output from the light capturing device while a modulated light beam is projected by the LIDAR system, the templates generated based on the signal and noise power parameters, and the second data having a higher sampling rate and a lower quantization resolution than the first data. In some examples, the second signal processor also cross-correlates the templates with the second data to determine an estimated propagation delay associated with the second data, the estimated propagation delay convertible to an estimated range to an object that reflected the modulated light beam.Type: ApplicationFiled: March 27, 2018Publication date: February 14, 2019Inventors: Michael Bronstein, Ron Kimmel, Alex Bronstein, Ohad Menashe, Erez Sperling, Aviad Zabatani, Vitaly Surazhsky
-
Publication number: 20190045169Abstract: A mechanism is described for facilitating maximizing efficiency of time-of-flight optical depth sensors in computing environments according to one embodiment. An apparatus of embodiments, as described herein, includes detection and observation logic to facilitate a camera to detect and observe a scene and one or more objects in the scene. The apparatus may further include generation, transmission, and reception (GTR) logic to generate a beam of photons based on a transmitted code stored at a memory device, where the GTR logic to transmit the beam of photons to the one or more objects and capture a beam of photons bouncing back from the one or more objects. The apparatus may further include computation and correlation logic to correlate first values of the transmitted code with second values of a returned signal from the one or more objects as the beam of photons.Type: ApplicationFiled: May 30, 2018Publication date: February 7, 2019Applicant: Intel CorporationInventors: Ohad Menashe, Erez Sperling, Aviad Zabatani, Vitaly Surazhsky, Michael Bronstein, Ron Kimmel, Alex Bronstein