Patents by Inventor Vivek P. Singh

Vivek P. Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240342312
    Abstract: Embodiments of the disclosure include methods and compositions for in situ cardiac cell regeneration, including transdifferentiation of cardiac cells to cardiomyocytes. In particular embodiments, in situ cardiac cell regeneration encompasses delivery of p63-TID and one or both of Hand2 and myocardin, and in specific embodiments further includes one or more of Gata4, Mef2c, and Tbx5, and/or one or more of ETV2 and VEGF. In specific aspects of the disclosure, adult cardiac fibroblasts are reprogrammed into cardiomyocytes using viral vectors that harbor p63-TID and one or both of the transcription factors Hand2 and myocardin.
    Type: Application
    Filed: August 3, 2022
    Publication date: October 17, 2024
    Applicant: Baylor College of Medicine
    Inventors: Todd Rosengart, Jayapratap Pinnamaneni, Vivek P. Singh, Jiangchang Yang
  • Patent number: 12031135
    Abstract: Embodiments of the disclosure include methods and compositions for in situ cardiac cell regeneration, including transdifferentiation of cardiac cells to cardiomyocytes. In particular embodiments, in situ cardiac cell regeneration encompasses delivery of p63 shRNA and one or both of Hand2 and myocardin, and in specific embodiments further includes one or more of Gata4, Mef2c, and Tbx5. In specific aspects of the disclosure, adult cardiac fibroblasts are reprogrammed into cardiomyocytes using viral vectors that harbor p63 shRNA and one or both of the transcription factors Hand2 and myocardin.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: July 9, 2024
    Assignee: Baylor College of Medicine
    Inventors: Vivekkumar B. Patel, Hongran Wang, Vivek P. Singh, Erin Lynn Reineke, Megumi Mathison, Austin J. Cooney, Todd Rosengart
  • Publication number: 20220348921
    Abstract: Embodiments of the disclosure include methods and compositions for in situ cardiac cell regeneration, including transdifferentiation of cardiac cells to cardiomyocytes. In particular embodiments, in situ cardiac cell regeneration encompasses delivery of p63 shRNA and one or both of Hand2 and myocardin, and in specific embodiments further includes one or more of Gata4, Mef2c, and Tbx5. In specific aspects of the disclosure, adult cardiac fibroblasts are reprogrammed into cardiomyocytes using viral vectors that harbor p63 shRNA and one or both of the transcription factors Hand2 and myocardin.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 3, 2022
    Inventors: Vivekkumar B. Patel, Hongran Wang, Vivek P. Singh, Erin Lynn Reineke, Megumi Mathison, Austin J. Cooney, Todd Rosengart
  • Patent number: 11421229
    Abstract: Embodiments of the disclosure include methods and compositions for in situ cardiac cell regeneration, including transdifferentiation of cardiac cells to cardiomyocytes. In particular embodiments, in situ cardiac cell regeneration encompasses delivery of p63 shRNA and one or both of Hand2 and myocardin, and in specific embodiments further includes one or more of Gata4, Mef2c, and Tbx5. In specific aspects of the disclosure, adult cardiac fibroblasts are reprogrammed into cardiomyocytes using viral vectors that harbor p63 shRNA and one or both of the transcription factors Hand2 and myocardin.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: August 23, 2022
    Assignee: Baylor College of Medicine
    Inventors: Vivekkumar B. Patel, Hongran Wang, Vivek P. Singh, Erin Lynn Reineke, Megumi Mathison, Austin J. Cooney, Todd Rosengart
  • Publication number: 20220143142
    Abstract: Embodiments of the disclosure provide methods and compositions related to improving cardiomyocyte production by exposing starting cells to ETV2 and/or VEGF. The starting cells in specific embodiments are fibroblasts and/or endothelial cells, and following exposure to ETV2 and/or VEGF the resultant cells are exposed to one or more cardiomyocyte transdifferentiation factors, such as GATA4, myocyte enhancer factor-2c (Mef2c), T-box transcription factor 5 (TBX5), or a combination thereof. The produced cardiomyocytes are provided to individuals in need thereof, in particular embodiments.
    Type: Application
    Filed: March 17, 2020
    Publication date: May 12, 2022
    Inventors: Megumi Mathison, Todd Rosengart, Vivek P. Singh, Deepthi Sanagasetti, Jaya Pratap Pinnamaneni, Jianchang Yang
  • Publication number: 20180066252
    Abstract: Embodiments of the disclosure include methods and compositions for in situ cardiac cell regeneration, including transdifferentiation of cardiac cells to cardiomyocytes. In particular embodiments, in situ cardiac cell regeneration encompasses delivery of p63 shRNA and one or both of Hand2 and myocardin, and in specific embodiments further includes one or more of Gata4, Mef2c, and Tbx5. In specific aspects of the disclosure, adult cardiac fibroblasts are reprogrammed into cardiomyocytes using viral vectors that harbor p63 shRNA and one or both of the transcription factors Hand2 and myocardin.
    Type: Application
    Filed: February 19, 2016
    Publication date: March 8, 2018
    Inventors: Vivekkumar B. Patel, Hongran Wang, Vivek P. Singh, Erin Lynn Reineke, Megumi Mathison, Austin J. Cooney, Todd Rosengart