Patents by Inventor Vivian Liu

Vivian Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240104275
    Abstract: In various embodiments, a design exploration application generates images that represent design alternatives for three-dimensional (3D) objects. The design exploration application generates a keyword prompt based on design intent text that describes a 3D object. The design exploration application executes a first machine learning model on the keyword prompt to generate a first set of keywords. The design exploration application generates a rephrase prompt based on a second set of keywords that includes at least one keyword from the first set of keywords. The design exploration application executes the first machine learning model on the rephrase prompt to generate a final text prompt. The design exploration application executes a second machine learning model on the final text prompt to generate a set of images.
    Type: Application
    Filed: August 8, 2023
    Publication date: March 28, 2024
    Inventors: Vivian LIU, Jo Karel VERMEULEN, George William FITZMAURICE, Justin Frank MATEJKA
  • Patent number: 7448395
    Abstract: The present invention substantially removes dry etch residue from a dry plasma etch process 110 prior to depositing a cobalt layer 124 on silicon substrate and/or polysilicon material. Subsequently, one or more annealing processes 128 are performed that cause the cobalt to react with the silicon thereby forming cobalt silicide regions. The lack of dry etch residue remaining between the deposited cobalt and the underlying silicon permits the cobalt silicide regions to be formed substantially uniform with a desired silicide sheet and contact resistance. The dry etch residue is substantially removed by performing a first cleaning operation 112 and then an extended cleaning operation 114 that includes a suitable cleaning solution. The first cleaning operation typically removes some, but not all of the dry etch residue. The extended cleaning operation 114 is performed at a higher temperature and/or for an extended duration and substantially removes dry etch residue remaining after the first cleaning operation 112.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: November 11, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Jiong-Ping Lu, Freidoon Mehrad, Lindsey Hall, Vivian Liu, Clint Montgomery, Scott Johnson
  • Patent number: 7112497
    Abstract: The present invention pertains to a multi-layer sidewall process (100) that facilitates forming a transistor in a manner that allows adherence to certain design rules while concurrently mitigating adverse effects associated with forming areas of transistors close to one another. First sidewall spacers having first widths are formed (124) alongside a gate structure of a transistor to facilitate implanting source/drain dopants far enough away from the gate structure so that dopant atoms are unlikely to migrate into a channel area under the gate structure. Additionally, the process provides uniform layers for dopant atoms to pass through to mitigate variations in device characteristics across a wafer. The manner of forming the sidewall spacers also allows a salicide blocking process to be simplified. The first sidewall spacers are subsequently reduced (132) to establish second sidewall spacers having second widths which are smaller than the first widths.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: September 26, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Freidoon Mehrad, Vivian Liu, Amitava Chatterjee
  • Publication number: 20060014393
    Abstract: The present invention substantially removes dry etch residue from a dry plasma etch process 110 prior to depositing a cobalt layer 124 on silicon substrate and/or polysilicon material. Subsequently, one or more annealing processes 128 are performed that cause the cobalt to react with the silicon thereby forming cobalt silicide regions. The lack of dry etch residue remaining between the deposited cobalt and the underlying silicon permits the cobalt silicide regions to be formed substantially uniform with a desired silicide sheet and contact resistance. The dry etch residue is substantially removed by performing a first cleaning operation 112 and then an extended cleaning operation 114 that includes a suitable cleaning solution. The first cleaning operation typically removes some, but not all of the dry etch residue. The extended cleaning operation 114 is performed at a higher temperature and/or for an extended duration and substantially removes dry etch residue remaining after the first cleaning operation 112.
    Type: Application
    Filed: July 19, 2004
    Publication date: January 19, 2006
    Inventors: Jiong-Ping Lu, Freidoon Mehrad, Lindsey Hall, Vivian Liu, Clint Montgomery, Scott Johnson
  • Publication number: 20050287751
    Abstract: The present invention pertains to a multi-layer sidewall process (100) that facilitates forming a transistor in a manner that allows adherence to certain design rules while concurrently mitigating adverse effects associated with forming areas of transistors close to one another. First sidewall spacers having first widths are formed (124) alongside a gate structure of a transistor to facilitate implanting source/drain dopants far enough away from the gate structure so that dopant atoms are unlikely to migrate into a channel area under the gate structure. Additionally, the process provides uniform layers for dopant atoms to pass through to mitigate variations in device characteristics across a wafer. The manner of forming the sidewall spacers also allows a salicide blocking process to be simplified. The first sidewall spacers are subsequently reduced (132) to establish second sidewall spacers having second widths which are smaller than the first widths.
    Type: Application
    Filed: June 25, 2004
    Publication date: December 29, 2005
    Inventors: Freidoon Mehrad, Vivian Liu, Amitava Chatterjee
  • Publication number: 20050014130
    Abstract: This invention incorporates the use of bioimpedance measurements of intact cells to classify and characterize any unique global cellular event such as signal transduction from ligand/receptor interactions, cytotoxicity, apoptosis, tumor cell progression, or stem cell differentiation. Specifically, we have demonstrated that this invention can classify signal transduction pathways from G-protein coupled, tyrosine kinase, and nuclear receptors.
    Type: Application
    Filed: July 14, 2003
    Publication date: January 20, 2005
    Inventors: Vivian Liu, Simon Pitchford, Chris Fuller, Ed Verdonk