Patents by Inventor Vivian W. Jones

Vivian W. Jones has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240099815
    Abstract: Structured surfaces are described. In one embodiment, the structured surface comprises a plurality of structures having a complement cumulative slope magnitude distribution (Fcc) such that at least 30, 40, 50, 60, 70, 80 or 90% of structures have a slope greater than 10 degrees; and less than 80% of the structures have a slope greater than 35 degrees. In other embodiments, the structures comprise peaks and valleys defined by a Cartesian coordinate system such that the peaks and valleys have a width and length in the x-y plane and a height in the z-direction and at least a portion of the peaks and/or valleys vary in height in the y direction and/or the x-direction by at least 10% of the average height. Articles and methods are also described.
    Type: Application
    Filed: February 4, 2022
    Publication date: March 28, 2024
    Inventors: Jodi L. Connell, Raymont P. Johnston, Karl J.L Geisler, Brian W. Lueck, John J. Sullivan, Vivian W. Jones, Gordon A. Kuhnley
  • Patent number: 11906701
    Abstract: Anti-reflective article includes a layer defining an anti-reflective surface. The anti-reflective surface includes a series of alternating micro-peaks and micro-spaces extending along an axis. The surface also includes a series of nano-peaks extending along an axis. The nano-peaks are disposed at least on the micro-spaces and, optionally, the micro-peaks. The article may be disposed on a photovoltaic module or skylight to reduce reflections and resist the collection of dust and dirt.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: February 20, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Timothy J. Hebrink, Todd G. Pett, Moses M. David, James P. Burke, Vivian W. Jones, Haiyan Zhang
  • Patent number: 11907447
    Abstract: A polymeric film including a major surface having a plurality of intersecting extended structures is described. For at least a majority of the structures in the plurality of extended structures: each structure extends along a length of the structure, has an average width along a direction transverse to the length and generally along the first major surface, and has an average height along a direction generally perpendicular to the first major surface; and the average width of the structure may be in a range of 1 to 200 micrometers, the average height of the structure may be in a range of 1 to 200 micrometers, and the length may be at least 3 times the average width. The extended structures may be randomly or pseudorandomly oriented and may be formed by microreplicating a surface of a paper.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: February 20, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Brett J. Sitter, Dawn V. Muyres, Jonathan T. Kahl, Vivian W. Jones, Owen M. Anderson, Gordan A. Kuhnley, Joshua J. Loga, Erin A. McDowell
  • Patent number: 11906252
    Abstract: A composite cooling film (100) comprises an antisoiling layer (160) secured to a first major surface of a reflective microporous layer (110). The reflective microporous layer (110) comprises a first fluoropolymer and is diffusely reflective of electromagnetic radiation over a majority of wavelengths in the range of 400 to 2500 nanometers. The antisoiling layer (160) has an outwardly facing antisoiling surface (162) opposite the micro-voided polymer film. An article (1100) comprising the composite cooling film (1112) secured to a substrate (1110) is also disclosed.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: February 20, 2024
    Inventors: Timothy J. Hebrink, Michelle M. Mok, Derek J. Dehn, Mary E. Johansen, Lon R. Johnson, Todd G. Pett, Moses M. David, James P. Burke, Vivian W. Jones, Haiyan Zhang
  • Publication number: 20240001415
    Abstract: Films and articles are described comprising a microstructured surface having an array of peak structures and adjacent valleys. For improved cleanability, the valleys preferably have a maximum width ranging from 10 microns to 250 microns and the peak structures have a side wall angle greater than 10 degrees. The peak structures may comprise two or more facets such as in the case of a linear array of prisms or an array of cube-corners elements. The facets form continuous or semi-continuous surfaces in the same direction. The valleys typically lack intersecting walls. Also described are methods of making and methods of use. The microstructured surface of the article can be prepared by various microreplication techniques such as coating, injection molding, embossing, laser etching, extrusion, casting and curing a polymerizable resin; and bonding microstructured film to a surface or article with an adhesive.
    Type: Application
    Filed: January 25, 2022
    Publication date: January 4, 2024
    Inventors: Jodi L. Connell, Raymond P. Johnston, John J. Sullivan, Karl J.L. Geisler, Vivian W. Jones, Gordon A. Kuhnley, Patrick G. Zimmerman, Bradley W. Eaton, Kurt J. Halverson, Brian W. Lueck, Alexandr C. Eldredge, Hyacinth L. Lechuga, Lynn E. Lorimor, Diane R. Wolk, Junia M. Pereira, Caroline M. Yitalo, Linda W. Suszko, Daniel J. Rogers, Bryon A. Mrrill
  • Publication number: 20230405915
    Abstract: Films and articles are described comprising a microstructured surface having an array of peak structures and adjacent valleys. For improved cleanability, the valleys preferably have a maximum width ranging from 10 microns to 250 microns and the peak structures have a side wall angle greater than 10 degrees. The peak structures may comprise two or more facets such as in the case of a linear array of prisms or an array of cube-corners elements. The facets form continuous or semi-continuous surfaces in the same direction. The valleys typically lack intersecting walls. Also described are methods of making and methods of use. The microstructured surface of the article can be prepared by various microreplication techniques such as coating, injection molding, embossing, laser etching, extrusion, casting and curing a polymerizable resin; and bonding microstructured film to a surface or article with an adhesive.
    Type: Application
    Filed: August 10, 2023
    Publication date: December 21, 2023
    Inventors: Jodi L. Connell, Raymond P. Johnston, John J. Sullivan, Karl J.L. Geisler, Vivian W. Jones, Gordon A. Kuhnley, Patrick G. Zimmerman, Bradley W. Eaton, Kurt J. Halverson, Brian W. Lueck, Alexander C. Eldredge, Hyacinth L. Lechuga
  • Publication number: 20230400606
    Abstract: An optical construction includes a lens layer and optically opaque first and second mask layers. The lens layer has a first major surface including a plurality of microlenses arranged along orthogonal first and second directions. The first and second mask layers are spaced apart from the first major surface and define respective pluralities of through first and second openings therein arranged along the first and second directions. The first mask layer is disposed between the structured first major surface and the second mask layer. There is a one-to-one correspondence between the microlenses and the first and second openings. The optical construction includes an intermediate layer disposed between the structured first major surface and the first mask layer and including an undulating second major surface facing, and in substantial registration with, an undulating third major surface of first mask layer so as to define a substantially uniform spacing therebetween.
    Type: Application
    Filed: October 20, 2021
    Publication date: December 14, 2023
    Inventors: Adam T. Ringberg, Vivian W. Jones, James A. Phipps, Tri D. Pham, Przemyslaw P. Markowicz, Mark A. Roehrig, Stephen P. Maki, Bing Hao, David J. Rowe, Serena L. Mollenhauer, Mikhail A. Belkin, Zhaohui Yang, Jathan D. Edwards
  • Publication number: 20230350262
    Abstract: An optical component includes a substrate and a plurality of structures formed on a first major surface of the substrate and extending from the first major surface along a thickness direction of the optical component. The optical component can be assembled with another optical component to form a light control film. A light control film includes first and second optical components including respective pluralities of first and second structures formed on, and extending from, respective first and second substrates. The first and second optical components are assembled so that the first and second structures are disposed between the first and second substrates and interleaved to form a plurality of pairs of adjacent first and second structures. For each of at least some of the pairs, the adjacent first and second structures define an optical cavity therebetween substantially filled with a light absorbing material.
    Type: Application
    Filed: April 20, 2023
    Publication date: November 2, 2023
    Inventors: Kevin W. Gotrik, Stephen J. Etzkorn, Adam T. Ringberg, Owen M. Anderson, Vivian W. Jones, Nicholas A. Johnson, Bharat R. Acharya
  • Patent number: 11766822
    Abstract: Films and articles are described comprising a microstructured surface having an array of peak structures and adjacent valleys. For improved cleanability, the valleys preferably have a maximum width ranging from 10 microns to 250 microns and the peak structures have a side wall angle greater than 10 degrees. The peak structures may comprise two or more facets such as in the case of a linear array of prisms or an array of cube-corners elements. The facets form continuous or semi-continuous surfaces in the same direction. The valleys typically lack intersecting walls. Also described are methods of making and methods of use. The microstructured surface of the article can be prepared by various microreplication techniques such as coating, injection molding, embossing, laser etching, extrusion, casting and curing a polymerizable resin; and bonding microstructured film to a surface or article with an adhesive.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: September 26, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Jodi L. Connell, Raymond P. Johnston, John J. Sullivan, Karl J. L. Geisler, Vivian W. Jones, Gordon A. Kuhnley, Patrick G. Zimmerman, Bradley W. Eaton, Kurt J. Halverson, Brian W. Lueck, Alexander C. Eldredge, Hyacinth L. Lechuga
  • Patent number: 11749769
    Abstract: A light redirecting film includes a first layer disposed on a second layer with structured major surfaces of the first and second layers facing each other. An optically reflective layer or a metal layer is disposed between the first and second layers. The first layer can be a hot melt adhesive layer and the second layer can be a polymeric layer. The first and second layers can be unitary layers. The first layer can be a first polymeric layer having a softening temperature T1 and the second layer can be a second polymeric layer having a softening temperature T2 greater than T1. Heating and/or applying pressure to the film changes an optical characteristic of the film by less than about 5%.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: September 5, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Vivian W. Jones, Gary E. Gaides, Stephen A. Johnson, Nathaniel I. Lehn, Jiaying Ma, Adam T. Ringberg, Tianyu Wu, Fuming B. Li
  • Patent number: 11654664
    Abstract: A composite cooling film including a reflective nonporous inorganic-particle-filled organic polymeric layer, an ultra-violet-protective layer or layers, and an antisoiling layer.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: May 23, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Timothy J. Hebrink, Milind B. Sabade, Laura R. Nereng, Caleb T. Nelson, James P. Burke, Vivian W. Jones
  • Patent number: 11634613
    Abstract: A composite cooling film including non-fluorinated organic polymeric layer, a metal layer disposed inwardly of the non-fluorinated organic polymeric layer, and an antisoiling, ultraviolet-absorbing hardcoat layer that is disposed outwardly of the non-fluorinated organic polymeric layer.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: April 25, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Timothy J. Hebrink, Michelle M. S. Mok, Vivian W. Jones, Milind B. Sabade, James P. Burke, James A. Phipps
  • Publication number: 20230019944
    Abstract: A composite cooling film including a reflective nonporous inorganic-particle-filled organic polymeric layer, an ultra-violet-protective layer or layers, and an antisoiling layer.
    Type: Application
    Filed: January 13, 2021
    Publication date: January 19, 2023
    Inventors: Timothy J. Hebrink, Miland B. Sabade, Laura R. Nereng, Caleb T. Nelson, James P. Burke, Vivian W. Jones
  • Publication number: 20230011414
    Abstract: A composite cooling film including non-fluorinated organic polymeric layer, a metal layer disposed inwardly of the non-fluorinated organic polymeric layer, and an antisoiling, ultraviolet-absorbing hardcoat layer that is disposed outwardly of the non-fluorinated organic polymeric layer.
    Type: Application
    Filed: December 15, 2020
    Publication date: January 12, 2023
    Inventors: Timothy J. Hebrink, Michelle M. S. Mok, Vivian W. Jones, Milind B. Sabade, James P. Burke, James A. Phipps
  • Publication number: 20230001676
    Abstract: A composite cooling film comprises an anti soiling layer of fluorinated organic polymeric material and a reflective metal layer that is disposed inwardly of the anti soiling layer, wherein the antisoiling layer comprises a first, outwardly-facing, exposed antisoiling surface and a second, inwardly-facing opposing surface.
    Type: Application
    Filed: December 17, 2020
    Publication date: January 5, 2023
    Inventors: Timothy J. Hebrink, Milind B. Sabade, Vivian W. Jones, James P. Burke, James A. Phipps
  • Publication number: 20230006085
    Abstract: A light redirecting film includes a first layer disposed on a second layer with structured major surfaces of the first and second layers facing each other. An optically reflective layer or a metal layer is disposed between the first and second layers. The first layer can be a hot melt adhesive layer and the second layer can be a polymeric layer. The first and second layers can be unitary layers. The first layer can be a first polymeric layer having a softening temperature T1 and the second layer can be a second polymeric layer having a softening temperature T2 greater than T1. Heating and/or applying pressure to the film changes an optical characteristic of the film by less than about 5%.
    Type: Application
    Filed: December 9, 2020
    Publication date: January 5, 2023
    Inventors: Vivian W. Jones, Gary E. Gaides, Stephen A. Johnson, Nathaniel I. Lehn, Jiaying Ma, Adam T. Ringberg, Tianyu Wu, Fuming B. Li
  • Publication number: 20220355567
    Abstract: A composite cooling film includes a reflective microporous layer that comprises a continous phase comprising an organic polymer, an ultraviolet-absorbing layer of organic polymeric material that is disposed outwardly of the reflective microporous layer, and an anti soiling layer being disposed outwardly of the reflective microporous layer.
    Type: Application
    Filed: December 15, 2020
    Publication date: November 10, 2022
    Inventors: Timothy J. Hebrink, James P. Burke, Vivian W. Jones, Michelle M. S. Mok, Milind B. Sabade, Haiyan Zhang
  • Publication number: 20220221627
    Abstract: A composite cooling film (100) comprises an ultraviolet-reflective multilayer optical film (120) and a reflective microporous layer (110) secured thereto. The ultraviolet-reflective multilayer optical film (120) hat is at least 50 percent reflective of ultraviolet radiation over a majority of the wavelength range of at least 340 but less than 400 nanometers. The reflective microporous layer (110) has a continuous phase comprising a nonfluorinated organic polymer and is diffusely reflective of solar radiation over a majority the wavelength range of 400 to 2500 nanometers, inclusive. The composite cooling film (100) has an average absorbance over the wavelength range 8-13 microns of at least 0.85. An article (1200) comprising the composite cooling film (100) adhered to a substrate (1210) is also disclosed.
    Type: Application
    Filed: May 21, 2020
    Publication date: July 14, 2022
    Inventors: Timothy J. Hebrink, Michelle M. Mok, Derek J. Dehn, Mary E. Johansen, Lon R. Johnson, Todd G. Pett, Moses M. David, James P. Burke, Vivian W. Jones, Haiyan Zhang
  • Publication number: 20220221235
    Abstract: A composite cooling film (100) comprises an antisoiling layer (160) secured to a first major surface of a reflective microporous layer (110). The reflective microporous layer (110) comprises a first fluoropolymer and is diffusely reflective of electromagnetic radiation over a majority of wavelengths in the range of 400 to 2500 nanometers. The antisoiling layer (160) has an outwardly facing antisoiling surface (162) opposite the micro-voided polymer film. An article (1100) comprising the composite cooling film (1112) secured to a substrate (1110) is also disclosed.
    Type: Application
    Filed: May 27, 2020
    Publication date: July 14, 2022
    Inventors: Timothy J. Hebrink, Michelle M. Mok, Derek J. Dehn, Mary E. Johansen, Lon R. Johnson, Todd G. Pett, Moses M. David, James P. Burke, Vivian W. Jones, Haiyan Zhang
  • Publication number: 20220035464
    Abstract: A polymeric film including a major surface having a plurality of intersecting extended structures is described. For at least a majority of the structures in the plurality of extended structures: each structure extends along a length of the structure, has an average width along a direction transverse to the length and generally along the first major surface, and has an average height along a direction generally perpendicular to the first major surface; and the average width of the structure may be in a range of 1 to 200 micrometers, the average height of the structure may be in a range of 1 to 200 micrometers, and the length may be at least 3 times the average width. The extended structures may be randomly or pseudorandomly oriented and may be formed by microreplicating a surface of a paper.
    Type: Application
    Filed: December 6, 2019
    Publication date: February 3, 2022
    Inventors: Brett J. Sitter, Dawn V. Muyres, Jonathan T. Kahl, Vivian W. Jones, Owen M. Anderson, Gordan A. Kuhnley, Joshua J. Loga, Erin A. McDowell