Patents by Inventor Vladimir A. Manasson

Vladimir A. Manasson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11888223
    Abstract: A steerable beam antenna includes a plurality of semiconductor chips arranged along a longitudinal axis. Each of the chips has a ground plane on its upper surface, and is doped to form an array of semiconductor switches arranged along the longitudinal axis. A corresponding array of scattering elements, each having a first leg and a second leg, is mounted on each chip along the longitudinal axis. A first electrode of each switch is configured for connection to a control circuit, a second electrode is connected to the ground plane, and a third electrode is connected to the first leg of one of the array of scattering elements, the second leg of which is connected to the ground plane. A dielectric element is mounted on the antenna chips along the longitudinal axis above the arrays of switches and scattering elements and is separated from the scattering elements by an air gap.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: January 30, 2024
    Assignee: Sierra Nevada Corporation
    Inventors: Vladimir A Manasson, Lev S. Sadovnik
  • Publication number: 20220190481
    Abstract: A steerable beam antenna includes a plurality of semiconductor chips arranged along a longitudinal axis. Each of the chips has a ground plane on its upper surface, and is doped to form an array of semiconductor switches arranged along the longitudinal axis. A corresponding array of scattering elements, each having a first leg and a second leg, is mounted on each chip along the longitudinal axis. A first electrode of each switch is configured for connection to a control circuit, a second electrode is connected to the ground plane, and a third electrode is connected to the first leg of one of the array of scattering elements, the second leg of which is connected to the ground plane. A dielectric element is mounted on the antenna chips along the longitudinal axis above the arrays of switches and scattering elements and is separated from the scattering elements by an air gap.
    Type: Application
    Filed: March 31, 2020
    Publication date: June 16, 2022
    Applicant: SIERRA NEVADA CORPORATION
    Inventors: Vladimir A. Manasson, Lev S. Sadovnik
  • Patent number: 11121465
    Abstract: A steerable beam antenna includes a feed line and first and second arrays of switchable scatterers along opposite sides of the feed line. The first array scatters an electromagnetic wave propagating through the feed line to form a first beam portion with a first polarization, and the second array scatters the propagating wave to form a second beam portion with a second polarization orthogonal to the first polarization. Each scatterer in the first and second arrays is switchable between a high state and a low state, the high state scatterers and the low-state scatterers in each of the first and second arrays defining a periodic pattern. The scatterers in the first and second arrays are switchable to shift the pattern of scatterers in one of the arrays relative to the pattern in the other array by a selectable period shift that yields a desired polarization for the beam.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: September 14, 2021
    Assignee: Sierra Nevada Corporation
    Inventors: Vladimir A. Manasson, Lev S. Sadovnik
  • Publication number: 20190379120
    Abstract: A steerable beam antenna includes a feed line and first and second arrays of switchable scatterers along opposite sides of the feed line. The first array scatters an electromagnetic wave propagating through the feed line to form a first beam portion with a first polarization, and the second array scatters the propagating wave to form a second beam portion with a second polarization orthogonal to the first polarization. Each scatterer in the first and second arrays is switchable between a high state and a low state, the high state scatterers and the low-state scatterers in each of the first and second arrays defining a periodic pattern. The scatterers in the first and second arrays are switchable to shift the pattern of scatterers in one of the arrays relative to the pattern in the other array by a selectable period shift that yields a desired polarization for the beam.
    Type: Application
    Filed: June 8, 2018
    Publication date: December 12, 2019
    Applicant: SIERRA NEVADA CORPORATION
    Inventors: Vladimir A. Manasson, Lev S. Sadovnik
  • Patent number: 10090602
    Abstract: A steerable beam antenna includes a rotatable drum having a diffraction grating surface, and a waveguide feed including first and second conductive metal bases extending axially along the length of the drum, each of the bases having an inner surface spaced from and opposed to the inner surface of the other base, and a proximal surface spaced from the drum surface by a gap. First and second parallel conductive metal plates extend distally from the first and second bases, respectively, the first and second plates having respective inner surfaces separated by an inter-plate space. First and second dielectric strips are flush-mounted on the inner surfaces of the first and second conductive metal bases, respectively, the first dielectric strip extending longitudinally along the inner surface of the first base, and the second dielectric strip extending longitudinally along the inner surface of the second base, opposite the first dielectric strip.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: October 2, 2018
    Assignee: Sierra Nevada Corporation
    Inventors: Vladimir A. Manasson, Lev S. Sadovnik
  • Publication number: 20180175508
    Abstract: A steerable beam antenna includes a rotatable drum having a diffraction grating surface, and a waveguide feed including first and second conductive metal bases extending axially along the length of the drum, each of the bases having an inner surface spaced from and opposed to the inner surface of the other base, and a proximal surface spaced from the drum surface by a gap. First and second parallel conductive metal plates extend distally from the first and second bases, respectively, the first and second plates having respective inner surfaces separated by an inter-plate space. First and second dielectric strips are flush-mounted on the inner surfaces of the first and second conductive metal bases, respectively, the first dielectric strip extending longitudinally along the inner surface of the first base, and the second dielectric strip extending longitudinally along the inner surface of the second base, opposite the first dielectric strip.
    Type: Application
    Filed: December 21, 2016
    Publication date: June 21, 2018
    Applicant: SIERRA NEVADA CORPORATION
    Inventors: Vladimir A. Manasson, Lev S. Sadovnik
  • Patent number: 9698478
    Abstract: An electronically-controlled steerable beam antenna with suppressed parasitic scattering includes a feed line defining an axis x; and first and second arrays of electronically-controlled switchable scatters distributed along the axis x, each of the scatterers in the first and second arrays being switchable between a high state and a low state to scatter an electromagnetic wave propagating through the transmission line so as to form a steerable antenna beam. Each of the scatters of the second array is configured to be 180°-phase-shifted relative to a corresponding scatter of the first array. The switchable scatterers of the first and second arrays are configured into high states and low states relative to each other so as to suppress parasitic scattering of the electromagnetic wave without suppressing the steerable antenna beam.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: July 4, 2017
    Assignee: SIERRA NEVADA CORPORATION
    Inventors: Vladimir A. Manasson, Lev S. Sadovnik, Vladimir Litvinov
  • Patent number: 9577342
    Abstract: A waveguide includes a dielectric substrate having first and second opposed surfaces defining a longitudinal wave propagation path therebetween; and a conductive grid on the first surface of the substrate and comprising a plurality of substantially parallel metal strips, each defining an axis. The grid renders the first surface of the substrate opaque to a longitudinal electromagnetic wave propagating along the longitudinal wave propagation path and polarized in a direction substantially parallel to the axes of the strips. The grid allows the first surface of the substrate to be transparent to a transverse electromagnetic wave having a transverse propagation path that intersects the first and second surfaces of the substrate and having a polarization in a direction substantially normal to the plurality of metal strips. A diffraction grating on the second surface allows the waveguide to function as an antenna element that may be employed in a beam-steering antenna system.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: February 21, 2017
    Assignee: SIERRA NEVADA CORPORATION
    Inventors: Vladimir Manasson, Victor Khodos, Lev Sadovnik, Aramais Avakian, Vladimir Litvinov, Dexin Jia, Mikhail Felman, Mark Aretskin
  • Publication number: 20150357711
    Abstract: An electronically-controlled steerable beam antenna with suppressed parasitic scattering includes a feed line defining an axis x; and first and second arrays of electronically-controlled switchable scatters distributed along the axis x, each of the scatterers in the first and second arrays being switchable between a high state and a low state to scatter an electromagnetic wave propagating through the transmission line so as to form a steerable antenna beam. Each of the scatters of the second array is configured to be 180°-phase-shifted relative to a corresponding scatter of the first array. The switchable scatterers of the first and second arrays are configured into high states and low states relative to each other so as to suppress parasitic scattering of the electromagnetic wave without suppressing the steerable antenna beam.
    Type: Application
    Filed: June 4, 2014
    Publication date: December 10, 2015
    Inventors: Vladimir A. Manasson, Lev S. Sadovnik, Vladimir Litvinov
  • Patent number: 8976066
    Abstract: A beam-forming antenna for transmission and/or reception of an electromagnetic signal having a given wavelength in a surrounding medium includes a transmission line electromagnetically coupled to an array of individually controllable antenna elements, each of which is oscillated by the signal with a controllable amplitude. The oscillation amplitude of each of the individual antenna elements is controlled by a switch. The antenna elements are arranged in various shapes such as a parabolic arc, a circular arc, a cylindrical surface or a conic surface. The antenna elements have various spacing such as uniform, parabolic, circular, or raised cosine.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: March 10, 2015
    Assignee: Sierra Nevada Corporation
    Inventors: Vladimir A. Manasson, Lev S. Sadovnik
  • Publication number: 20130321203
    Abstract: A beam-forming antenna for transmission and/or reception of an electromagnetic signal having a given wavelength in a surrounding medium includes a transmission line electromagnetically coupled to an array of individually controllable antenna elements, each of which is oscillated by the signal with a controllable amplitude. The oscillation amplitude of each of the individual antenna elements is controlled by a switch. The antenna elements are arranged in various shapes such as a parabolic arc, a circular arc, a cylindrical surface or a conic surface. The antenna elements have various spacing such as uniform, parabolic, circular, or raised cosine.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 5, 2013
    Inventors: Vladimir A. Manasson, Lev S. Sadovnik
  • Patent number: 8456360
    Abstract: A beam-forming antenna for transmission and/or reception of an electromagnetic signal having a given wavelength in a surrounding medium includes a transmission line electromagnetically coupled to an array of individually controllable antenna elements, each of which is oscillated by the signal with a controllable amplitude. The oscillation amplitude of each of the individual antenna elements is controlled by a switch. The antenna elements are arranged in various shapes such as a parabolic arc, a circular arc, a cylindrical surface or a conic surface. The antenna elements have various spacing such as uniform, parabolic, circular, or raised cosine.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: June 4, 2013
    Assignee: Sierra Nevada Corporation
    Inventors: Vladimir A. Manasson, Lev S. Sadovnik
  • Publication number: 20120056794
    Abstract: A waveguide includes a dielectric substrate having first and second opposed surfaces defining a longitudinal wave propagation path therebetween; and a conductive grid on the first surface of the substrate and comprising a plurality of substantially parallel metal strips, each defining an axis. The grid renders the first surface of the substrate opaque to a longitudinal electromagnetic wave propagating along the longitudinal wave propagation path and polarized in a direction substantially parallel to the axes of the strips. The grid allows the first surface of the substrate to be transparent to a transverse electromagnetic wave having a transverse propagation path that intersects the first and second surfaces of the substrate and having a polarization in a direction substantially normal to the plurality of metal strips. A diffraction grating on the second surface allows the waveguide to function as an antenna element that may be employed in a beam-steering antenna system.
    Type: Application
    Filed: November 8, 2011
    Publication date: March 8, 2012
    Inventors: Vladimir Manasson, Victor Khodos, Lev Sadovnik, Aramais Avakian, Vladimir Litvinov, Dexin Jia, Mikhail Felman, Mark Aretskin
  • Patent number: 8059051
    Abstract: A waveguide includes a dielectric substrate having first and second opposed surfaces defining a longitudinal wave propagation path therebetween; and a conductive grid on the first surface of the substrate and comprising a plurality of substantially parallel metal strips, each defining an axis. The grid renders the first surface of the substrate opaque to a longitudinal electromagnetic wave propagating along the longitudinal wave propagation path and polarized in a direction substantially parallel to the axes of the strips. The grid allows the first surface of the substrate to be transparent to a transverse electromagnetic wave having a transverse propagation path that intersects the first and second surfaces of the substrate and having a polarization in a direction substantially normal to the plurality of metal strips. A diffraction grating on the second surface allows the waveguide to function as an antenna element that may be employed in a beam-steering antenna system.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: November 15, 2011
    Assignee: Sierra Nevada Corporation
    Inventors: Vladimir Manasson, Victor Khodos, Lev Sadovnik, Aramais Avakian, Vladimir Litvinov, Dexin Jia, Mikhail Felman, Mark Aretskin
  • Patent number: 7995000
    Abstract: An electronically controlled monolithic array antenna includes a transmission line through which an electromagnetic signal may be propagated, and a metal antenna element defining an evanescent coupling edge located so as to permit evanescent coupling of the signal between the transmission line and the antenna element. The antenna element includes a conductive ground plate; an array of conductive edge elements defining the coupling edge, each of the edge elements being electrically connected to a control signal source, and each of the edge elements being electrically isolated from the ground plate by an insulative isolation gap; and a plurality of switches, each of which is selectively operable in response to the control signal to electrically connect selected edge elements to the ground plate across the insulative isolation gap so as to provide a selectively variable electromagnetic coupling geometry of the coupling edge.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: August 9, 2011
    Assignee: Sierra Nevada Corporation
    Inventors: Vladimir Manasson, Vladimir I. Litvinov, Lev Sadovnik, Mark Aretskin, Mikhail Felman, Aramais Avakian
  • Publication number: 20110140965
    Abstract: A beam-forming antenna for transmission and/or reception of an electromagnetic signal having a given wavelength in a surrounding medium includes a transmission line electromagnetically coupled to an array of individually controllable antenna elements, each of which is oscillated by the signal with a controllable amplitude. The oscillation amplitude of each of the individual antenna elements is controlled by a switch. The antenna elements are arranged in various shapes such as a parabolic arc, a circular arc, a cylindrical surface or a conic surface. The antenna elements have various spacing such as uniform, parabolic, circular, or raised cosine.
    Type: Application
    Filed: December 29, 2010
    Publication date: June 16, 2011
    Inventors: Vladimir A. Manasson, Lev S. Sadovnik
  • Patent number: 7864112
    Abstract: A beam-forming antenna for transmission and/or reception of an electromagnetic signal having a given wavelength in a surrounding medium includes a transmission line electromagnetically coupled to an array of individually controllable antenna elements, each of which is oscillated by the signal with a controllable amplitude. The antenna elements are arranged in a linear array and are spaced from each other by a distance that does not exceed one-third the signal's wavelength in the surrounding medium. The oscillation amplitude of each of the individual antenna elements is controlled by an amplitude controlling device, such as a switch, a gain-controlled amplifier, or a gain-controlled attenuator. The amplitude controlling devices, in turn, are controlled by a computer that receives as its input the desired beamshape, and that is programmed to operate the amplitude controlling devices in accordance with a set of stored amplitude values derived empirically for a set of desired beamshapes.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: January 4, 2011
    Assignee: Sierra Nevada Corporation
    Inventors: Vladimir A. Manasson, Lev S. Sadovnik
  • Patent number: 7777286
    Abstract: A microwave switch array includes a plurality of microwave slotlines, each of which is controlled by a semiconductor switch including a first PIN junction formed by a primary P-type electrode and a primary N-type electrode separated by the slotline. The switches inject a plasma into the slotline in response to a potential applied across the first PIN junction. Each of the switches includes a second PIN junction between the primary P-type electrode and a secondary N-type electrode, and a third PIN junction between the primary N-type electrode and a secondary P-type electrode. Metal contacts connect the primary P-type electrode and the secondary N-type electrode across second PIN junction, and the primary N-type electrode and the secondary P-type electrode across the third PIN junction. The secondary electrodes extract plasma that diffuses away from the first PIN junction, thereby minimizing the performance degrading effects of plasma diffusion.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: August 17, 2010
    Assignee: Sierra Nevada Corporation
    Inventors: Vladimir Manasson, Vladimir I. Litvinov, Lev Sadovnik, Aramais Avakian
  • Patent number: 7667660
    Abstract: A scanning antenna with an antenna element having an evanescent coupling portion includes a waveguide assembly including a transmission line, adjacent the coupling portion, through which an electromagnetic signal is transmitted, permitting evanescent coupling of the signal between the transmission line and the antenna element. First and second conductive waveguide plates, on opposite sides of the transmission line, define planes that are substantially parallel to the axis of the transmission line, each plate extending distally from a proximal end adjacent the antenna element, whereby the propagated signal forms a beam that is confined to the space between the plates and thus limited to a plane that is parallel to the planes defined by the plates. The signal coupled between the transmission line and the antenna element is preferably polarized so that its electric field component is in a plane parallel to the planes defined by the plates.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: February 23, 2010
    Assignee: Sierra Nevada Corporation
    Inventors: Vladimir Manasson, Vladimir I. Litvinov, Lev Sadovnik, Mark Aretskin, Mikhail Felman, Aramais Avakian
  • Publication number: 20100001917
    Abstract: A waveguide includes a dielectric substrate having first and second opposed surfaces defining a longitudinal wave propagation path therebetween; and a conductive grid on the first surface of the substrate and comprising a plurality of substantially parallel metal strips, each defining an axis. The grid renders the first surface of the substrate opaque to a longitudinal electromagnetic wave propagating along the longitudinal wave propagation path and polarized in a direction substantially parallel to the axes of the strips. The grid allows the first surface of the substrate to be transparent to a transverse electromagnetic wave having a transverse propagation path that intersects the first and second surfaces of the substrate and having a polarization in a direction substantially normal to the plurality of metal strips. A diffraction grating on the second surface allows the waveguide to function as an antenna element that may be employed in a beam-steering antenna system.
    Type: Application
    Filed: July 7, 2008
    Publication date: January 7, 2010
    Inventors: Vladimir Manasson, Victor Khodos, Lev Sadovnik, Aramais Avakian, Vladimir Litvinov, Dexin Jia, Mikhail Felman, Mark Aretskin