Patents by Inventor Vladimir A. Nikitin

Vladimir A. Nikitin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100165513
    Abstract: A system according to one embodiment includes a write pole having an end region positioned towards an air bearing surface, a first flare point, and a second flare point positioned between the air bearing surface and the first flare point; and a shield positioned above the write pole, wherein a cross sectional area of the write pole at a point between the first and second flare points along a plane passing through the write pole and oriented about parallel to the air bearing surface is greater than a cross sectional area of the end region of the write pole along a plane oriented parallel to the plane passing through the second flare point. Additional systems and methods are also presented.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Inventors: Christian Rene Bonhote, Quang Le, Jeffrey S. Lille, Vladimir Nikitin, Aron Pentek
  • Publication number: 20100163523
    Abstract: In one embodiment and method of the present invention, a coil of a write head is created by forming a P1 pedestal layer and a back gap layer and further forming a coil pattern consistent with the coil to be formed and insulator spacers dispersed in the coil pattern, using a non-damascene process, thereafter the coil is formed by plating using a damascene process.
    Type: Application
    Filed: February 17, 2010
    Publication date: July 1, 2010
    Inventors: Daniel Wayne Bedell, David Patrick Druist, Edward Hin Pong Lee, Jennifer Ai-Ming Loo, Vladimir Nikitin, Sue Siyang Zhang
  • Publication number: 20100155366
    Abstract: A method for manufacturing a magnetic write head having a stepped, recessed, high magnetic moment pole connected with a write pole. The stepped pole structure helps to channel magnetic flux to the write pole without leaking write field to the magnetic medium. This allows the write head to maintain a high write field strength at very small bit sizes. The method includes depositing a dielectric layer and a first CMP layer over substrate that can include a magnetic shaping layer. A mask is formed over the dielectric layer, the mask having an opening to define the stepped pole structure. The image of the mask is transferred into the dielectric layer. A high magnetic moment material is deposited and a chemical mechanical polishing is performed to planarize the magnetic material and dielectric layer.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 24, 2010
    Inventors: Amanda Baer, Wen-Chien David Hsiao, John I. Kim, Yinshi Liu, Vladimir Nikitin, Trevor W. Olson, Hicham Moulay Sougrati, Yuan Yao
  • Publication number: 20100157474
    Abstract: A system according to one embodiment includes a magnetic pole; a bump structure above the pole, the bump structure having a first surface oriented at a first angle between 1° and 89° from a plane of deposition of the pole, and a second surface oriented at a second angle between 1° and 89° from the plane of deposition of the pole, wherein the second angle is greater than the first angle; and a shield above the bump structure. A method according to one embodiment includes forming a bump layer above a magnetic pole; removing a portion of the bump layer for forming a step therein; and milling the bump layer for defining thereon a first surface oriented at a first angle between 1° and 89° from a plane of deposition of the bump layer, and a second surface oriented at a second angle between 1° and 89° from the plane of deposition of the bump layer, wherein the second angle is greater than the first angle.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Inventors: Wen-Chien David Hsiao, Vladimir Nikitin, Aron Pentek, Sue Siyang Zhang, Yi Zheng
  • Publication number: 20100159154
    Abstract: A method in one embodiment includes forming a layer of a nonmagnetic material above an upper surface of a substrate; forming a resist structure above the layer of nonmagnetic material, wherein the resist structure has an undercut; removing a portion of the layer of nonmagnetic material not covered by the resist structure; depositing a layer of magnetic material above the substrate adjacent a remaining portion of the layer of nonmagnetic material such that at least portions of the layer of magnetic material and the remaining portion of the layer of nonmagnetic material lie in a common plane; removing the resist structure; and forming a write pole above the layer of magnetic material and the remaining portion of the layer of nonmagnetic material. Additional methods are also presented.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Inventors: Amanda Baer, Wen-Chien David Hsiao, John I. Kim, Vladimir Nikitin, Trevor W. Olson, John Bruce Piggott, JR., Yuan Yao
  • Publication number: 20100157471
    Abstract: According to one embodiment, a system comprises an upper yoke having a first length defined between a pole tip thereof and a back gap thereof. In addition, the system includes a lower yoke having a second length defined between a pole tip thereof and a back gap thereof, the second length being greater than the first length. Also, the system includes coil turns in the upper and lower yokes. Additional systems and methods are also presented.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Inventors: Donald G. Allen, Wen-Chien David Hsiao, Edward Hin Pong Lee, Jennifer Leung, Vladimir Nikitin
  • Publication number: 20100157470
    Abstract: A method in one embodiment includes forming a resist structure above an upper surface of a substrate, wherein a portion of the upper surface of the substrate is a shaping layer, wherein the resist structure has an undercut; depositing a layer of magnetic material above exposed regions of the substrate, wherein a portion of the layer of magnetic material tapers towards the substrate as it approaches the undercut; removing the resist structure; and forming a write pole above the layer of magnetic material. Additional methods are disclosed.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Inventors: Amanda Baer, Wen-Chien David Hsiao, Vladimir Nikitin, Trevor W. Olson, Yuan Yao
  • Patent number: 7729084
    Abstract: In one embodiment and method of the present invention, a coil of a write head is created by forming a P1 pedestal layer and a back gap layer and further forming a coil pattern consistent with the coil to be formed and insulator spacers dispersed in the coil pattern, using a non-damascene process, thereafter the coil is formed by plating using a damascene process.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: June 1, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Daniel Wayne Bedell, David Patrick Druist, Edward Hin Pong Lee, Jennifer Ai-Ming Loo, Vladimir Nikitin
  • Patent number: 7719793
    Abstract: A magnetic medium for use in data recording that has a series of concentric magnetic track portions separated from one another by non-magnetic portions or gap portions. The magnetic portions define data tracks and prevent signals from one track from bleeding into another track. Because the data tracks are distinctly separated, adjacent track interference is completely avoided. The disk may be manufactured by depositing first and second materials sequentially onto a rotating tube, the first and second materials having different etch rates. The tube may then be slided into disks and the disks subjected to a reactive ion etch (RIE) to form a disk surface having concentric raised portions separated by concentric recessed portions. A magnetic material can then be deposited. An optional chemical mechanical polishing process can then be performed to planarize the surface, resulting in a planar surface having rings of magnetic material separated by rings of non-magnetic material.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: May 18, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Vladimir Nikitin
  • Patent number: 7692893
    Abstract: A method and apparatus for processing sub-micron write head flare definition is provided. The method for processing a perpendicular magnetic head forms a portion of a perpendicular write head, where the portion of the write head includes a first pole layer, a coil layer, a second pole layer and a write pole, the method forms a portion of a magnetic read head adjacent to the portion of the perpendicular write head, where the portion of the read head includes a shield layer and a sensor, the method also laps the write pole concurrently with the sensor to define a flare position of the pole tip and to define a sensor height, where the flare position of the pole tip is defined in the same photo-lithography step as the back edge of the sensor.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: April 6, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Vladimir Nikitin, Samuel Wei-san Yuan
  • Patent number: 7652853
    Abstract: A magnetic data recording head having reduced thermally induced shield (pole tip) protrusion. The head includes a magnetoresistive sensor sandwiched between first and second shield. The shields have a substantially reduced thickness. The distance between the shields defines a gap (G) and the shields each have a thickness (ST) such that the ratio ST/G is greater than 2, but less than 50. More preferably the ratio ST/G is greater than 2, but less than 20, and yet more preferably, the ratio ST/G is greater than 2 and less than 10.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: January 26, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Gity Samadi Hosseinali, Vladimir Nikitin, Robert Langland Smith
  • Patent number: 7639453
    Abstract: A magnetic head structure for use in perpendicular magnetic recording. The magnetic head includes a magnetic write head having a return pole with a magnetic shunt structure extending from the back end opposite the ABS. The magnetic shunt structure prevents magnetic field from the write coil from reaching and affecting the read head. More specifically the shunt structure prevents magnetic field from the portion of the write coil beyond the back gap (as measured from the ABS) from magnetizing a magnetic shield of the read head. The shunt structure is also configured so as to avoid stray field writing. The size and shape of the shunt structure is therefore, limited to avoid attracting stray fields that might cause such stray field writing.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: December 29, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hardayal Singh Gill, Kuok San Ho, Wen-Chien David Hsiao, Yimin Hsu, Edward Hin Pong Lee, Vladimir Nikitin
  • Patent number: 7633710
    Abstract: A magnetic head including an induction coil having coil turns that are disposed between two magnetic poles of the magnetic head. The coil turns include a lower coil turn portion and an upper coil turn portion. In fabricating the induction coil, the lower coil turn portion is fabricated first, and the upper coil turn portion is fabricated directly upon the lower coil turn portion. The lower coil turn portion may be fabricated using damascene methods and the upper coil turn portion may be fabricated utilizing photolithographic methods. The lower coil turn portion and the upper coil turn portion of the induction coil turns are electrically connected, such that the thickness of the overall induction coil turns is increased. As a result, the electrical resistance of the coil turns is decreased, and heat generated in the coil is reduced.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: December 15, 2009
    Assignee: Hitachi Global Storage Technologies B.V.
    Inventors: Edward Hin Pong Lee, Vladimir Nikitin
  • Patent number: 7630177
    Abstract: In a tunnel magnetoresistive (TMR) device, free sublayers are separated by an intermediate spacer layer that serves to ensure a uniform circumferential magnetization in the free stack, counterbalancing orange-peel coupling by antiferromagnetic exchange coupling. Thus, a CPP MR device may have a seed stack, a pinned stack on the seed stack, and a tunnel barrier on the pinned stack. A free stack can be on the tunnel barrier, and the free stack can include structure for promoting uniform circumferential magnetization in the free stack.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: December 8, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Robert Stanley Beach, David Eugene Heim, Vladimir Nikitin, David John Seagle
  • Publication number: 20090268348
    Abstract: A method in one embodiment includes forming an electric lapping guide layer; forming a write pole; forming a first gap layer over the write pole; masking a portion of the first gap layer for defining a window over the write pole and at least a portion of the electric lapping guide layer; and forming a bump over the write pole in the window. A system in one embodiment includes an electric lapping guide layer; a write pole positioned to one side of the electric lapping guide layer; and a bump formed over the write pole in a window, wherein a back end of the electric lapping guide layer and a front end of the bump are about a same distance from a lapped surface of a head. Additional methods and systems are presented.
    Type: Application
    Filed: April 28, 2008
    Publication date: October 29, 2009
    Inventors: Christian Rene Bonhote, Jeffrey S. Lille, Vladimir Nikitin, Aron Pentek, Neil Leslie Robertson
  • Publication number: 20090268350
    Abstract: A magnetic write head having a trailing shield configured to optimize both write field strength and field gradient. The write head includes a write pole, a trailing gap layer formed over the trailing edge of the write pole and a trailing magnetic shield formed over the non-magnetic write gap layer such that the non-magnetic write gap layer is sandwiched between the trailing magnetic shield and the write pole. The trailing magnetic shield has a first surface disposed at the air bearing surface and second surface disposed away from the air bearing surface that is tapered at an angle of 20 to 75 degrees relative to the trailing edge of the write pole.
    Type: Application
    Filed: April 25, 2008
    Publication date: October 29, 2009
    Inventors: Wen-Chien David Hsiao, Vladimir Nikitin
  • Patent number: 7603762
    Abstract: An optical lapping guide for determining an amount of lapping performed on a row of sliders in a process for manufacturing sliders for magnetic data recording. The optical lapping guide is constructed with a front edge that is at an angle with respect to an air bearing surface plane ABS plane, such that a portion of the lapping guides is in front of the ABS and portion of the lapping guide is behind the ABS. As lapping progresses, an increasing amount of the lapping guide will be exposed at the ABS and visible for inspection. Therefore, after a lapping process has been performed, the optical lapping guide can be inspected to determine the amount of material removed by lapping. The greater the amount of the lapping guide that is exposed and visible, the greater the amount of material removed by lapping.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: October 20, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Amanda Baer, Vladimir Nikitin, Aron Pentek, Neil Leslie Robertson
  • Patent number: 7593183
    Abstract: A magnetic write pole having a structure that prevents thermally induced pole tip protrusion. The write head has a return pole with a magnetic pedestal formed at the air bearing surface (ABS) and a back gap at an end opposite the ABS. An electrically conductive write coil having a plurality of turns passes over the return pole. A fill layer of a material having a low coefficient of thermal expansion, such as alumina is disposed between the coil and the pedestal, and may extend over the top of the coil to the back gap. A photoresist coil insulation layer may be provided between the turns of the coil to insulate the turns of the coil from one another. The photoresist coil insulation layer can also extend to the back gap. A write pole, formed above the return pole and coil is magnetically connected with the back gap layer and return pole by a magnetic shaping layer.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: September 22, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wen-Chien David Hsiao, Yimin Hsu, Edward Hin Pong Lee, Vladimir Nikitin, Katalin Pentek
  • Patent number: 7578049
    Abstract: A method for manufacturing a write pole for a perpendicular magnetic write head. The method includes forming a mask structure over a full film layer of magnetic write pole material. A layer of hard mask material such as conformally deposited alumina is then deposited full film over the mask and write pole material. An ion mill, such as in an Ar or CHF3 chemistry is then used to preferentially remove horizontally disposed portions of the alumina layer (hard mask layer), thereby forming vertical hard mask walls at the sides of the mask structure. An ion mill is then used to form the write pole, with the alumna side walls providing excellent masking for forming well defined write pole edges. A relatively gentle clean up process can then be performed to remove the remaining mask material and side walls.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: August 25, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Yimin Hsu, Vladimir Nikitin, Aron Pentek
  • Patent number: 7576951
    Abstract: A magnetic write head for perpendicular magnetic recording having a write pole with a concave trailing edge. The magnetic write pole can have a trapezoidal shape with first and second laterally opposed sides that are further apart at the trailing edge than at the leading edge. The write head may or may not include a magnetic trailing shield, and if a trailing shield is included it is separated from the trailing edge by a non-magnetic write gap layer. The concave trailing edge improves magnetic performance such as by improving the transition curvature. A method for constructing the write head includes forming a magnetic write pole by forming a mask structure over a deposited write pole material, the mask structure having an alumina hard mask and an image transfer layer such as DURAMIDE®. An alumina fill layer is then deposited and a chemical mechanical polish is performed to open up the image transfer layer.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: August 18, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Donald G. Allen, Amanda Baer, Michael Feldbaum, Hung-Chin Guthrie, Wen-Chien David Hsiao, Yimin Hsu, Ming Jiang, Yinshi Liu, Aaron Neuhaus, Vladimir Nikitin, Aron Pentek, Katalin Pentek, Yi Zheng