Patents by Inventor Vladimir Anferov

Vladimir Anferov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230277876
    Abstract: Embodiments of the present invention describe systems and methods for providing proton therapy treatment using a beam line where the ESS is reduced or eliminated. For multi-room configurations, a beam line is included having quadrupole and steerer magnets to align and focus a particle beam extracted by an accelerator and guided by a bend section. A degrader is disposed between the bend section and the treatment room, and the energy analyzing functionality is performed by the gantry.
    Type: Application
    Filed: February 27, 2023
    Publication date: September 7, 2023
    Inventors: Manuel BENNA, Vladimir ANFEROV, Andrii RUSANOV
  • Patent number: 11607567
    Abstract: Embodiments of the present invention describe systems and methods for providing proton therapy treatment using a beam line where the ESS is reduced or eliminated. For multi-room configurations, a beam line is included having quadrupole and steerer magnets to align and focus a particle beam extracted by an accelerator and guided by a bend section. A degrader is disposed between the bend section and the treatment room, and the energy analyzing functionality is performed by the gantry.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: March 21, 2023
    Assignees: Varian Medical Systems, Inc, Varian Medical Systms Particle Therapy GmbH & Co. KG
    Inventors: Manuel Benna, Vladimir Anferov, Andrii Rusanov
  • Publication number: 20220131254
    Abstract: A nonlinear parametric device includes a planar substrate and a millimeter-wave resonator formed from superconductive material deposited on the planar substrate. When the resonator is cooled below a critical temperature, it exhibits nonlinear kinetic inductance that may be used to implement millimeter-wave nonlinear frequency generation and parametric amplification. Millimeter waves may be coupled into, and out of, the nonlinear parametric device with hollow rectangular electromagnetic waveguides. Niobium nitride is an excellent superconductive material for kinetic inductance due to its high intrinsic sheet inductance, a critical temperature that is higher than many other superconductive materials, and relatively low loss at millimeter-wave frequencies.
    Type: Application
    Filed: March 3, 2020
    Publication date: April 28, 2022
    Inventors: DAVID I. SCHUSTER, AZIZA SULEYMANZADE, JONATHAN SIMON, ALEXANDER VLADIMIR ANFEROV
  • Publication number: 20200376300
    Abstract: Embodiments of the present invention describe systems and methods for providing proton therapy treatment using a beam line where the ESS is reduced or eliminated. For multi-room configurations, a beam line is included having quadrupole and steerer magnets to align and focus a particle beam extracted by an accelerator and guided by a bend section. A degrader is disposed between the bend section and the treatment room, and the energy analyzing functionality is performed by the gantry.
    Type: Application
    Filed: May 29, 2019
    Publication date: December 3, 2020
    Inventors: Manuel BENNA, Vladimir ANFEROV, Andrii RUSANOV
  • Patent number: 10485995
    Abstract: A compact lightweight gantry for a proton therapy system that has a source-to-axis distance (SAD) of less than 2 m and can deliver a proton beam of superior quality. The reduced SAD leads to reduced requirements on the maximum magnetic fields that can be generated by the bend magnets in the gantry beamline. Correspondingly, lightweight bend magnets can be used. The various components in the gantry beamline are optimized to achieve a beam spot size of approximately 4 mm sigma or less through a pencil beam scanning nozzle disposed downstream of the final bending magnet. In addition, the proton therapy system is configured to operate at a maximum beam energy in the range of 220-230 MeV.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: November 26, 2019
    Assignees: VARIAN MEDICAL SYSTEMS, INC., VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH.
    Inventors: Vladimir Anferov, Alexander Winnebeck
  • Publication number: 20180178038
    Abstract: A compact lightweight gantry for a proton therapy system that has a source-to-axis distance (SAD) of less than 2 m and can deliver a proton beam of superior quality. The reduced SAD leads to reduced requirements on the maximum magnetic fields that can be generated by the bend magnets in the gantry beamline. Correspondingly, lightweight bend magnets can be used. The various components in the gantry beamline are optimized to achieve a beam spot size of approximately 4 mm sigma or less through a pencil beam scanning nozzle disposed downstream of the final bending magnet. In addition, the proton therapy system is configured to operate at a maximum beam energy in the range of 220-230 MeV.
    Type: Application
    Filed: December 28, 2016
    Publication date: June 28, 2018
    Inventors: Vladimir ANFEROV, Alexander WINNEBECK
  • Patent number: 9452300
    Abstract: Systems and methods of controlling a proton beam in a proton therapy system, the system including a proton beam delivery system including at least one achromatic beamline having a first power setting to direct a proton beam having a first predetermined range of proton beam energies to a target treatment area, and a second power setting to direct a proton beam having a second predetermined range of proton beam energies to the target treatment area, and a power changing unit configured to control an energy level of the proton beam and a power setting of the at least one achromatic beamline such that the power changing unit changes the power setting of the at least one achromatic beamline between the first power setting and the second power setting based on changes in proton beam energy that occur within the first predetermined range of proton beam energies.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: September 27, 2016
    Assignee: ProNova Solutions, LLC
    Inventor: Vladimir Anferov
  • Publication number: 20160030769
    Abstract: A method and device are designed to deliver intensity-modulated ion beam therapy radiation doses closely conforming to tumors of arbitrary shape, via a series of two-dimensional (2-D) continuous raster scans of a pencil beam, wherein each scan takes no more than about 100 milliseconds to complete. The device includes a fast scanning nozzle for the exit of an ion beam delivery gantry. The fast scanning nozzle has a fast combined-function X-Y steering magnet, and is coupled to a rastering control system capable of adjusting the length of each scan line, continuously varying the beam intensity along each scan line, and executing multiple rescans of a tumor depth layer within a single patient breathing cycle. An in-beam absolute dose and dose profile monitoring system is capable of millimeter-scale position resolution and millisecond-scale feedback to the control system to ensure the safety and efficacy of the treatment implementation.
    Type: Application
    Filed: August 1, 2014
    Publication date: February 4, 2016
    Applicant: PHENIX MEDICAL LLC
    Inventors: John M. Cameron, Vladimir Anferov, Steven Vigdor
  • Publication number: 20150080633
    Abstract: Systems and methods of controlling a proton beam in a proton therapy system, the system including a proton beam delivery system including at least one achromatic beamline having a first power setting to direct a proton beam having a first predetermined range of proton beam energies to a target treatment area, and a second power setting to direct a proton beam having a second predetermined range of proton beam energies to the target treatment area, and a power changing unit configured to control an energy level of the proton beam and a power setting of the at least one achromatic beamline such that the power changing unit changes the power setting of the at least one achromatic beamline between the first power setting and the second power setting based on changes in proton beam energy that occur within the first predetermined range of proton beam energies.
    Type: Application
    Filed: September 19, 2014
    Publication date: March 19, 2015
    Inventor: Vladimir Anferov
  • Publication number: 20140014849
    Abstract: A particle beam transport system used for particle radiation therapy is provided. A beam of particles exiting from an accelerator is transported at fixed energy for treatment of patients in one or more treatment rooms using permanent magnets. In one embodiment, the system includes a series of fixed-magnetic-field permanent magnets as beam focusing elements that transport the beam at fixed energy to a point where the constant energy beam can be modified for use independently in different treatment rooms. In some embodiments, the particle beam may be deflected using dipole or Lambertson magnets manufactured using permanent magnetic material. The system may also incorporate a matching section imposed as the beam exits the accelerator. The matching system includes diagnostic elements and feedback systems that verify the beam properties as it exits the accelerator, and modify it, if necessary, until the beam attains a desired energy value.
    Type: Application
    Filed: July 8, 2013
    Publication date: January 16, 2014
    Applicant: ProCure Treatment Centers, Inc.
    Inventors: Vladimir A. Anferov, John M. Cameron, James T. Volk
  • Patent number: 8575563
    Abstract: A gantry for administering proton beam therapy with improvements which reduce the size, weight, costs and radiation beam loss associated with proton beam therapy systems currently commercially available. The gantry utilizes achromatic superconducting multi-function electromagnet systems wherein the magnets can include dipoles and quadrupoles. The achromatic properties of the rampable magnet systems allow for ease of transmission of the beam whose energy is rapidly changed through a large range of different energies without changing of the strength of the magnetic fields or dipole settings. The magnets may be made with either low or high temperature superconductors. The gantry design further integrates beam scanning but keeps the gantry isocentric. A much greater fraction of the beam can be transmitted through the gantry than with current art, thereby reducing radiation shielding requirements and the demand put on the accelerator to produce large quantities of proton beam.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: November 5, 2013
    Assignee: ProCure Treatment Centers, Inc.
    Inventors: John M. Cameron, Vladimir Anferov, Timothy A. Antaya
  • Publication number: 20110101236
    Abstract: A gantry for administering proton beam therapy with improvements which reduce the size, weight, costs and radiation beam loss associated with proton beam therapy systems currently commercially available. The gantry utilizes achromatic superconducting multi-function electromagnet systems wherein the magnets can include dipoles and quadrupoles. The achromatic properties of the rampable magnet systems allow for ease of transmission of the beam whose energy is rapidly changed through a large range of different energies without changing of the strength of the magnetic fields or dipole settings. The magnets may be made with either low or high temperature superconductors. The gantry design further integrates beam scanning but keeps the gantry isocentric. A much greater fraction of the beam can be transmitted through the gantry than with current art, thereby reducing radiation shielding requirements and the demand put on the accelerator to produce large quantities of proton beam.
    Type: Application
    Filed: November 2, 2010
    Publication date: May 5, 2011
    Inventors: John M. Cameron, Vladimir Anferov, Timothy A. Antaya
  • Patent number: 7095230
    Abstract: In a unilateral NMR probe for the analysis of a material comprising at least one magnet for generating a constant time-invariant polarization field B0 in the material to be analyzed and current conductors forming a radio frequency oscillation circuit for generating a pulsed radio frequency magnetic excitation field B1 which is superimposed on the polarization field N0 in the material, the circuit conductors are so designed as to provide several adjacent excitation fields B0 with alternatingly oppositely oriented magnetic fields, whereby the current conductors generating each one of the excitation fields have a distance from each other which causes a certain penetration depth in the material to be analyzed and echoes received therefrom provide measurement values which are characteristic for the material being analyzed.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: August 22, 2006
    Inventors: Bernhard Blümich, Michael Bruder, Martin Klein, Karl-Heinz Krause, Michael Rabkin, Jürgen Stangenberg, Vladimir Anferov, Sophia Anferova, Radu Fechete
  • Publication number: 20050040823
    Abstract: In a unilateral NMR probe for the analysis of a material comprising at least one magnet for generating a constant time-invariant polarization field B0 in the material to be analyzed and current conductors forming a radio frequency oscillation circuit for generating a pulsed radio frequency magnetic excitation field B1 which is superimposed on the polarization field N0 in the material, the circuit conductors are so designed as to provide several adjacent excitation fields B0 with alternatingly oppositely oriented magnetic fields, whereby the current conductors generating each one of the excitation fields have a distance from each other which causes a certain penetration depth in the material to be analyzed and echoes received therefrom provide measurement values which are characteristic for the material being analyzed.
    Type: Application
    Filed: September 30, 2004
    Publication date: February 24, 2005
    Inventors: Bernhard Blumich, Michael Bruder, Martin Klein, Karl-Heinz Krause, Michael Rabkin, Jurgen Stangenberg, Vladimir Anferov, Sophia Anferova, Radu Fechete