Patents by Inventor Vladimir Bulovic

Vladimir Bulovic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150357142
    Abstract: Electromechanical devices described herein may employ tunneling phenomena to function as low-voltage switches. Opposing electrodes may be separated by an elastically deformable layer which, in some cases, may be made up of a non-electrically conductive material. In some embodiments, the elastically deformable layer is substantially free of electrically conductive material. When a sufficient actuation voltage and/or force is applied, the electrodes are brought toward one another and, accordingly, the elastically deformable layer is compressed. Though, the elastically deformable layer prevents the electrodes from making direct contact with one another. Rather, when the electrodes are close enough to one another, a tunneling current arises therebetween. The elastically deformable layer may exhibit spring-like behavior such that, upon release of the actuation voltage and/or force, the separation distance between electrodes is restored.
    Type: Application
    Filed: January 28, 2014
    Publication date: December 10, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Vladimir Bulovic, Jeffrey H. Lang, Hae-Seung Lee, Timothy M. Swager, Trisha L. Andrew, Matthew Eric D'Asaro, Parag Deotare, Apoorva Murarka, Farnaz Niroui, Ellen Sletten, Annie I-Jen Wang
  • Patent number: 9195004
    Abstract: The disclosure relates to providing printed structures of polymer that have substantially flat printed surfaces. In one embodiment, the disclosure relates to a post-printing treatment apparatus for receiving a substrate supporting a polymer printing thereon. The polymer can be PMMA or other suitable polymer. In a related embodiment, the polymer defines a thermoplastic polymer having a glass transition temperature. The apparatus can comprise of a chamber, and input manifold, an exhaust manifold, a solvent reservoir and a gas reservoir. The solvent reservoir provides one or more solvent systems adapted to chemically bind, and potentially react, with the polymer. The gas reservoir provides one or more gases for drying the substrate and printed polymer after the solvent treatment step. In one application, a substrate having printed surface thereon is placed in the chamber and exposed to the solvent system for sufficient period of time to provide substantially flat print surfaces.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: November 24, 2015
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Vladimir Bulovic, Murali Chaparala, Jianglong Chen, Eric Wing-Jing Lam, Valerie Leblanc, Martin A. Schmidt
  • Publication number: 20150311664
    Abstract: The disclosure relates to method and apparatus for micro-contact printing of micro-electromechanical systems (“MEMS”) in a solvent-free environment. The disclosed embodiments enable forming a composite membrane over a parylene layer and transferring the composite structure to a receiving structure to form one or more microcavities covered by the composite membrane. The parylene film may have a thickness in the range of about 100 nm-2 microns; 100 nm-1 micron, 200-300 nm, 300-500 nm, 500 nm to 1 micron and 1-30 microns. Next, one or more secondary layers are formed over the parylene to create a composite membrane. The composite membrane may have a thickness of about 100 nm to 700 nm to several microns. The composite membrane's deflection in response to external forces can be measured to provide a contact-less detector. Conversely, the composite membrane may be actuated using an external bias to cause deflection commensurate with the applied bias.
    Type: Application
    Filed: November 13, 2014
    Publication date: October 29, 2015
    Inventors: Vladimir BULOVIC, Jeffrey Hastings LANG, Apoorva MURARKA, Annie I-Jen WANG, Wendi CHANG
  • Publication number: 20150311444
    Abstract: The present invention generally relates to electrodes formed by oxidative chemical vapor deposition and related methods and devices.
    Type: Application
    Filed: February 13, 2013
    Publication date: October 29, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Miles C. Barr, Rachel M. Howden, Karen K. Gleason, Vladimir Bulovic
  • Publication number: 20150309306
    Abstract: The disclosed embodiments provide sensitive pixel arrays formed using solvent-assisted or unassisted release processes. Exemplary devices include detectors arrays, tunable optical instruments, deflectable minors, digital micro-mirrors, digital light processing chips, tunable optical micro-cavity resonators, acoustic sensors, acoustic actuators, acoustic transducer devices and capacitive zipper actuators to name a few.
    Type: Application
    Filed: May 19, 2014
    Publication date: October 29, 2015
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Apoorva MURARKA, Vladimir BULOVIC, Annie I-Jen WANG, Jeffrey Hastings LANG
  • Publication number: 20150268461
    Abstract: The disclosed embodiments provide sensitive pixel arrays formed using solvent-assisted or unassisted release processes. Exemplary devices include detectors arrays, tunable optical instruments, deflectable mirrors, digital micro-mirrors, digital light processing chips, tunable optical micro-cavity resonators, acoustic sensors, acoustic actuators, acoustic transducer devices and capacitive zipper actuators to name a few.
    Type: Application
    Filed: February 25, 2014
    Publication date: September 24, 2015
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Apoorva MURARKA, Vladimir BULOVIC, Annie I-Jen WANG, Jeffrey Hastings LANG
  • Publication number: 20150255651
    Abstract: Described herein is an apparatus and method used to provide power or photovoltaic functionality to a display or device containing a display without impacting the visual perception of the display. The wavelength-selective photovoltaic (WPV) element is visibly transparent, in that it absorbs selectively around the visible emission (or reflection) peaks generated by the display. The photovoltaic material is able to cover a portion or the entire surface area of the display, without substantially blocking or perceptually impacting the emission (or reflection) of content from the display. The incident light that is absorbed by the photovoltaic element is then converted into electrical energy to provide power to the device, for example.
    Type: Application
    Filed: October 1, 2013
    Publication date: September 10, 2015
    Applicant: UBIQUITOUS ENERGY, INC.
    Inventors: Miles C. Barr, Ryan Salvas, Bart Anson Howe, Richard Royal Lunt, Vladimir Bulovic
  • Publication number: 20150228916
    Abstract: The embodiments disclosed herein are directed to optoelectronic devices based, on ultra-thin, lightweight and in-situ deposited parylene substrates, as well as methods of manufacture. Using a bottom-up approach, a readily releasable parylene thin film can be used for fabricating thin film electronic and optoelectronic systems on the thin and light substrates having thicknesses in the nanometer to low micron range. The disclosed method enables the integration of forming a parylene substrate with, the fabrication of a complete photovoltaic device under a fully contained, controlled environment.
    Type: Application
    Filed: January 29, 2015
    Publication date: August 13, 2015
    Inventors: Vladimir BULOVIC, Joel JEAN, Annie I-Jen WANG
  • Publication number: 20150228805
    Abstract: A method and apparatus for making analog and digital electronics which includes a composite including a squishable material doped with conductive particles. A microelectromechanical systems (MEMS) device has a channel made from the composite, where the channel forms a primary conduction path for the device. Upon applied voltage, capacitive actuators squeeze the composite, causing it to become conductive. The squishable device includes a control electrode, and a composite electrically and mechanically connected to two terminal electrodes. By applying a voltage to the control electrode relative to a first terminal electrode, an electric field is developed between the control electrode and the first terminal electrode. This electric field results in an attractive force between the control electrode and the first terminal electrode, which compresses the composite and enables electric control of the electron conduction from the first terminal electrode through the channel to the second terminal electrode.
    Type: Application
    Filed: January 9, 2015
    Publication date: August 13, 2015
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Vladimir Bulovic, Jeffrey H. Lang, Sarah Paydavosi, Annie I-Jen Wang, Trisha L. Andrew, Apoorva Murarka, Farnaz Niroui, Frank Yaul, Jeffrey C. Grossman
  • Patent number: 9099663
    Abstract: A solar cell and method of making are disclosed. The solar cell includes an acceptor layer a donor layer treated with a first quantum dot (QD) ligand and a blocking layer treated with a second, different, QD ligand. The acceptor layer has an acceptor layer valence band and an acceptor layer conduction band. The donor layer has a donor layer valence band and a donor layer conduction band, the donor layer valence band is higher than the acceptor layer valence band, the donor layer conduction band is higher than the acceptor layer conduction band. The blocking layer least partially blocks electron flow in at least one direction, the blocking layer having a blocking layer valence band and a blocking layer conduction band, the blocking layer valence band is higher than the donor layer valence band, the blocking layer conduction band is higher than the donor layer conduction band.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: August 4, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Chia-Hao Marcus Chuang, Vladimir Bulovic, Moungi G. Bawendi, Patrick Richard Brown
  • Patent number: 9093657
    Abstract: A white light emitting semiconductor nanocrystal includes a plurality of semiconductor nanocrystals.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: July 28, 2015
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Seth A. Coe-Sullivan, Vladimir Bulovic, Jonathan Steckel, Moungi G. Bawendi, Polina O. Anikeeva, Jonathan E. Halpert
  • Publication number: 20150206747
    Abstract: Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
    Type: Application
    Filed: December 8, 2014
    Publication date: July 23, 2015
    Inventors: Seth COE-SULLIVAN, Maria j. Anc, Leeann Kim, John E. Ritter, Marshall Cox, Craig Breen, Vladimir Bulovic, Ioannis Kymissis, Robert F. Praino, JR., Peter T. Kazlas
  • Patent number: 9054329
    Abstract: Light-emitting devices and displays with improved performance are disclosed. A light-emitting device includes an emissive material disposed between a first electrode, and a second electrode. Various embodiments include a device having a peak external quantum efficiency of at least about 2.2%; a device that emits light having a CIE color coordinate of x greater than 0.63; a device having an external quantum efficiency of at least about 2.2 percent when measured at a current density of 5 mA/cm2. Also disclosed is a light-emitting device comprising a plurality of semiconductor nanocrystals capable of emitting red light upon excitation, wherein the device has a peak luminescent efficiency of at least about 1.5 lumens per watt. Also disclosed is a light-emitting device comprising a plurality of semiconductor nanocrystals capable of emitting red light upon excitation, wherein the device has a luminescent efficiency of at least about 1.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: June 9, 2015
    Assignee: QD VISION, INC.
    Inventors: Seth Coe-Sullivan, Dorai Ramprasad, Ioannis Kymissis, Vladimir Bulovic, Marshall Cox, Caroline J. Roush, Peter T. Kazlas, Jonathan S. Steckel
  • Publication number: 20150153493
    Abstract: Disclosed are a device and a method for the design and fabrication of the device for enhancing the brightness of luminescent molecules, nanostructures, and thin films. The device includes a mirror, a dielectric medium or spacer, an absorptive layer, and a luminescent layer. The absorptive layer is a continuous thin film of a strongly absorbing organic or inorganic material. The luminescent layer may be a continuous luminescent thin film or an arrangement of isolated luminescent species, e.g., organic or metal-organic dye molecules, semiconductor quantum dots, or other semiconductor nanostructures, supported on top of the absorptive layer.
    Type: Application
    Filed: December 8, 2014
    Publication date: June 4, 2015
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Gleb M. Akselrod, Moungi G. Bawendi, Vladimir Bulovic, Jonathan R. Tischler, William A. Tisdale, Brian J. Walker
  • Patent number: 9005365
    Abstract: In one embodiment the disclosure relates to an apparatus for depositing an organic material on a substrate, including a source heater for heating organic particles to form suspended organic particles; a transport stream for delivering the suspended organic particles to a discharge nozzle, the discharge nozzle having a plurality of micro-pores, the micro-pores providing a conduit for passage of the suspended organic particles; and a nozzle heater for pulsatingly heating the micro-pores nozzle to discharge the suspended organic particles from the discharge nozzle.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: April 14, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Vladimir Bulovic, Marc A. Baldo, Martin A. Schmidt, Valerie Gassend, Jianglong Chen
  • Patent number: 8986780
    Abstract: The disclosure relates to a method for depositing an organic film layer on a substrate. In one implementation a method to deposit organic film by generating vaporized organic particles; streaming a carrier fluid proximal to a source to carry the vaporized organic particles and solid organic particles from the source towards the substrate; transporting the vaporized and solid organic particles through a discharge nozzle with a plurality of micro-pore openings, placed between the source and the substrate, that permits the passage of at least a portion of the vaporized or solid organic particles through the micro-pores; depositing the vaporized organic particles and the solid organic particles that are transported through the discharge nozzle onto the substrate.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: March 24, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Vladimir Bulovic, Marc A. Baldo, Martin A. Schmidt, Valerie Gassend, Jianglong Chen
  • Publication number: 20150076632
    Abstract: The disclosure provides methods and apparatus for release-assisted microcontact printing of MEMS. Specifically, the principles disclosed herein enable patterning diaphragms and conductive membranes on a substrate having articulations of desired shapes and sizes. Such diaphragms deflect under applied pressure or force (e.g., electrostatic, electromagnetic, acoustic, pneumatic, mechanical, etc.) generating a responsive signal. Alternatively, the diaphragm can be made to deflect in response to an external bias to measure the external bias/phenomenon. The disclosed principles enable transferring diaphragms and/or thin membranes without rupturing.
    Type: Application
    Filed: September 5, 2012
    Publication date: March 19, 2015
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Apoorva MURARKA, Vladimir BULOVIC, Sarah PAYDAVOSI
  • Patent number: 8963262
    Abstract: The disclosure is generally directed to fabrication steps, and operation principles for microelectromechanical (MEMS) transducers. In one embodiment, the disclosure relates to a texture morphing device. The texture morphing device includes: a plurality of supports arranged on a substrate to support a deformable mirror; an ITO layer; and a Distributed Bragg Reflector (DBR) layer. A pair of adjacent supports form a cavity with the ITO layer and the deformable mirror. When the height of the cavity changes responsive to an external pressure, the internal reflection within the cavity is changed. The change in the height of the cavity causes the exterior texture to morph. Similar principles are disclosed for constructing sensor and actuators.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: February 24, 2015
    Assignee: Massachusettes Institute of Technology
    Inventors: Vladimir Bulovic, Corinne E. Packard, Vanessa C. Wood, Apoorva Murarka, Gleb Akselrod
  • Patent number: 8962073
    Abstract: The disclosure relates to a method for depositing films on a substrate which may form part of an LED or other types of display. In one embodiment, the disclosure relates to an apparatus for depositing ink on a substrate. The apparatus includes a chamber for receiving ink; a discharge nozzle having an inlet port and an outlet port, the discharge nozzle receiving a quantity of ink from the chamber at the inlet port and dispensing the quantity of ink from the outlet port; and a dispenser for metering the quantity of ink from the chamber to the inlet port of the discharge nozzle; wherein the chamber receives ink in liquid form having a plurality of suspended particles and the quantity of ink is pulsatingly metered from the chamber to the discharge nozzle; and the discharge nozzle evaporates the carrier liquid and deposits the solid particles on the substrate.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: February 24, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Vladimir Bulovic, Jianglong Chen, Conor F. Madigan, Martin A. Schmidt
  • Publication number: 20150044804
    Abstract: The present invention generally relates to cathode buffer materials and devices and methods comprising the cathode buffer materials.
    Type: Application
    Filed: February 13, 2013
    Publication date: February 12, 2015
    Applicants: Massachusetts Institute of Technology, Eni S.p.A.
    Inventors: Miles C. Barr, Karen K. Gleason, Chiara Carbonera, Riccardo Po, Vladimir Bulovic