Patents by Inventor Vladimir Dmitriev

Vladimir Dmitriev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10353295
    Abstract: A method for generating a predetermined three-dimensional contour of a component and/or a wafer comprises: (a) determining a deviation of an existing three-dimensional contour of the component and/or the wafer from the predetermined three-dimensional contour; (b) calculating at least one three-dimensional arrangement of laser pulses having one or more parameter sets defining the laser pulses for correcting the determined existing deviation of the three-dimensional contour from the predetermined three-dimensional contour; and (c) applying the calculated at least one three-dimensional arrangement of laser pulses on the component and/or the wafer for generating the predetermined three-dimensional contour.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: July 16, 2019
    Assignees: Carl Zeiss SMS Ltd., Carl Zeiss SMT GmbH
    Inventors: Vladimir Dmitriev, Bernd Geh
  • Publication number: 20190170991
    Abstract: The inventions concerns an optical system comprising a scanning unit, a first lens-element group comprising at least a first lens element, a focusing unit which is designed to focus beams onto a focus, wherein the focusing unit comprises a second lens-element group comprising at least a second lens element and an imaging lens. The imaging lens further comprises a pupil plane and a wavefront manipulator. The wavefront manipulator of the optical system is arranged in the pupil plane of the imaging lens or in a plane that is conjugate to the pupil plane of the imaging lens, or the scanning unit of the optical system is arranged in a plane that is conjugate to the pupil plane of the imaging lens and the wavefront manipulator is arranged upstream of the scanning unit in the light direction. The focus of the second lens-element group lies in the pupil plane of the imaging lens in all focal positions of the focusing unit.
    Type: Application
    Filed: February 7, 2019
    Publication date: June 6, 2019
    Inventors: Markus Seesselberg, Vladimir Dmitriev, Joachim Welte, Uri Stern, Tomer Cohen, Erez Graitzer
  • Publication number: 20190107783
    Abstract: The invention relates to a method for correcting the critical dimension uniformity of a photomask for semiconductor lithography, comprising the following steps: determining a transfer coefficient as a calibration parameter, correcting the photomask by writing pixel fields, verifying the photomask corrected thus, wherein a transfer coefficient is used for verifying the corrected photomask, said transfer coefficient being obtained from a measured scattering function of pixel fields.
    Type: Application
    Filed: October 5, 2018
    Publication date: April 11, 2019
    Inventors: Thomas Thaler, Joachim Welte, Kujan Gorhad, Vladimir Dmitriev, Ute Buttgereit, Thomas Scheruebl, Yuval Perets
  • Patent number: 10114294
    Abstract: Method, apparatus for imparting direction-selective light attenuation. A method for imparting direction-selective light attenuation to a photomask may include assigning different attenuation levels to light rays of different directions of incidence. The method may also include computing an array of shading elements to attenuate the light rays with the assigned different attenuation levels, depending on the direction of incidence of the light rays. The method may further include inscribing the array of shading elements within a substrate of the photomask.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: October 30, 2018
    Assignee: Carl Zeiss SMS Ltd.
    Inventor: Vladimir Dmitriev
  • Patent number: 10061192
    Abstract: The invention relates to a method for correcting at least one error on wafers processed by at least one photolithographic mask, the method comprises: (a) measuring the at least one error on a wafer at a wafer processing site, and (b) modifying the at least one photolithographic mask by introducing at least one arrangement of local persistent modifications in the at least one photolithographic mask.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: August 28, 2018
    Assignees: Carl Zeiss SMT GmbH, Carl Zeiss SMS Ltd.
    Inventors: Dirk Beyer, Vladimir Dmitriev, Ofir Sharoni, Nadav Wertsman
  • Patent number: 9798249
    Abstract: The invention relates to a method for compensating at least one defect of an optical system which includes introducing an arrangement of local persistent modifications in at least one optical element of the optical system, which does not have pattern elements on one of its optical surfaces, so that the at least one defect is at least partially compensated.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: October 24, 2017
    Assignees: Carl Zeiss SMT GmbH, Carl Zeiss SMS Ltd.
    Inventors: Vladimir Dmitriev, Ingo Saenger, Frank Schlesener, Markus Mengel, Johannes Ruoff
  • Patent number: 9753366
    Abstract: The invention relates to a method for determining at least one unknown laser beam parameter of a laser beam used for correcting errors of a transparent material including inducing a first persistent modification in the material by an interaction with the laser beam having a first set of laser beam parameters, measuring the induced first persistent modification of the material, calculating a second persistent modification in the material using a model describing persistent modifications in the material with a second set of laser beam parameters, wherein the first set of laser beam parameters comprises the second set of laser beam parameters and the at least one unknown laser beam parameter, setting up a target functional including the first persistent modification and the second persistent modification, and determining the at least one unknown laser beam parameter by minimizing the target functional.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: September 5, 2017
    Assignee: Carl Zeiss SMS Ltd.
    Inventor: Vladimir Dmitriev
  • Publication number: 20170176866
    Abstract: Method, apparatus for imparting direction-selective light attenuation. A method for imparting direction-selective light attenuation to a photomask may include assigning different attenuation levels to light rays of different directions of incidence. The method may also include computing an array of shading elements to attenuate the light rays with the assigned different attenuation levels, depending on the direction of incidence of the light rays. The method may further include inscribing the array of shading elements within a substrate of the photomask.
    Type: Application
    Filed: March 8, 2017
    Publication date: June 22, 2017
    Inventor: Vladimir Dmitriev
  • Patent number: 9658527
    Abstract: A method for correcting a plurality of errors of a photolithographic mask is provided. First parameters of a imaging transformation of the photolithographic mask and second parameters of a laser beam locally directed onto the photolithographic mask are optimized, and the plurality of errors are corrected by applying an imaging transformation using optimized first parameters and locally directing the laser beam onto the photolithographic mask using optimized second parameters. The first and the second parameters are simultaneously optimized in a joint optimization process.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: May 23, 2017
    Assignee: Carl Zeiss SMS Ltd.
    Inventor: Vladimir Dmitriev
  • Patent number: 9606444
    Abstract: The invention relates to a method for locally deforming an optical element for photolithography in accordance with a predefined deformation form comprising: (a) generating at least one laser pulse having at least one laser beam parameter; and (b) directing the at least one laser pulse onto the optical element, wherein the at least one laser beam parameter of the laser pulse is selected to yield the predefined deformation form.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: March 28, 2017
    Assignee: Carl Zeiss SMS Ltd.
    Inventors: Vladimir Dmitriev, Uri Stern
  • Publication number: 20170010540
    Abstract: A method for generating a predetermined three-dimensional contour of a component and/or a wafer comprises: (a) determining a deviation of an existing three-dimensional contour of the component and/or the wafer from the predetermined three-dimensional contour; (b) calculating at least one three-dimensional arrangement of laser pulses having one or more parameter sets defining the laser pulses for correcting the determined existing deviation of the three-dimensional contour from the predetermined three-dimensional contour; and (c) applying the calculated at least one three-dimensional arrangement of laser pulses on the component and/or the wafer for generating the predetermined three-dimensional contour.
    Type: Application
    Filed: September 22, 2016
    Publication date: January 12, 2017
    Inventors: Vladimir Dmitriev, Bernd Geh
  • Publication number: 20160342080
    Abstract: The invention relates to a method for correcting at least one error on wafers processed by at least one photolithographic mask, the method comprises: (a) measuring the at least one error on a wafer at a wafer processing site, and (b) modifying the at least one photolithographic mask by introducing at least one arrangement of local persistent modifications in the at least one photolithographic mask.
    Type: Application
    Filed: August 5, 2016
    Publication date: November 24, 2016
    Inventors: Dirk Beyer, Vladimir Dmitriev, Ofir Sharoni, Nadav Wertsman
  • Patent number: 9435840
    Abstract: The patent application discloses mechanisms that, for a given channel step or edge response, bit interval, and data dependent jitter table can directly determine the minimal eye or bit error rate opening by building a worst case pattern considering the effect of data dependent jitter. These mechanisms can be based on building an indexed table of jitter samples, preparing a structure in the form of connected elements corresponding to the jitter samples, and then applying dynamic programming to determine paths through the connected elements.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: September 6, 2016
    Assignee: Mentor Graphics Corporation
    Inventor: Vladimir Dmitriev-Zdorov
  • Patent number: 9436080
    Abstract: The invention relates to a method for correcting at least one error on wafers processed by at least one photolithographic mask, the method comprises: (a) measuring the at least one error on a wafer at a wafer processing site, and (b) modifying the at least one photolithographic mask by introducing at least one arrangement of local persistent modifications in the at least one photolithographic mask.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: September 6, 2016
    Assignees: Carl Zeiss SMS GmbH, Carl Zeiss SMS Ltd.
    Inventors: Dirk Beyer, Vladimir Dmitriev, Ofir Sharoni, Nadav Wertsman
  • Patent number: 9416464
    Abstract: Apparatus and methods for controlling gas flows in a HVPE reactor. Gas flows may be controlled by a gas focusing element. Gas injection and gas collection tubes are positioned within an outer tube and are separated from each other to define a space there between. A gas, such as HCl gas, flows over the outer surfaces of the injection and collection tubes to contain gases within the space as they flow from the injection tube to the collection tube and over a seed upon which group III nitride materials are grown. Gas flows may also be controlled by a multi-tube structure that separates gases until they reach a grown zone. A multi-tube structure may include four tubes, which separate flows of a halide reactive gas, a reaction product that flows with a carrier gas, and ammonia.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: August 16, 2016
    Assignee: Ostendo Technologies, Inc.
    Inventors: Vladimir A. Dmitriev, Oleg V. Kovalenkov, Vladimir Ivantsov, Lisa Shapovalov, Alexander L. Syrkin, Anna Volkova, Vladimir Sizov, Alexander Usikov, Vitali A. Soukhoveev
  • Patent number: 9207530
    Abstract: A method includes generating, using a data processor, information showing variations of a parameter across a photo mask relative to an average value of the parameter measured at various locations on the photo mask. For example, the information can include data points, and each data point can be determined based on a ratio between a measurement value and an average of a plurality of measurement values.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: December 8, 2015
    Assignee: Carl Zeiss SMS Ltd.
    Inventors: Vladimir Dmitriev, Ofir Sharoni, Erez Graitzer, Igor Varvaruk, Guy Ben-Zvi
  • Patent number: 9134112
    Abstract: A contribution to a wafer level critical dimension distribution from a scanner of a lithography system can be determined based on measured wafer level critical dimension uniformity distribution and a contribution to the wafer level critical dimension distribution from a photo mask. Light transmission (104) across the photo mask (162) can be measured, a transmittance variation distribution of the photo mask can be determined, and the contribution to the wafer level critical dimension distribution from the photo mask (162) can be determined (132) based on the transmittance variation distribution of the photo mask.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: September 15, 2015
    Assignee: Carl Zeiss SMS Ltd.
    Inventors: Ofir Sharoni, Vladimir Dmitriev, Eran Chason, Guy Ben-Zvi, Igor Varvaruk
  • Patent number: 9034539
    Abstract: A system for processing a substrate includes a light source to provide light pulses, a stage to support a substrate, optics to focus the light pulses onto the substrate, a scanner to scan the light pulses across the substrate, a computer to control properties of the light pulses and the scanning of the light pulses such that color centers are generated in various regions of the substrate, and at least one of (i) an ultraviolet light source to irradiate the substrate with ultraviolet light or (ii) a heater to heat the substrate after formation of the color centers to stabilize a transmittance spectrum of the substrate.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: May 19, 2015
    Assignees: Carl Zeiss SMS GmbH, Carl Zeiss SMT GmbH, Carl Zeiss SMS Ltd.
    Inventors: Sergey Oshemkov, Ralph Klaesges, Markus Mengel, Vladimir Kruglyakov, Eitan Zait, Vladimir Dmitriev, Guy Ben-Zvi, Steven Labovitz
  • Publication number: 20150085269
    Abstract: The invention relates to a method for locally deforming an optical element for photolithography in accordance with a predefined deformation form comprising: (a) generating at least one laser pulse having at least one laser beam parameter; and (b) directing the at least one laser pulse onto the optical element, wherein the at least one laser beam parameter of the laser pulse is selected to yield the predefined deformation form.
    Type: Application
    Filed: August 21, 2012
    Publication date: March 26, 2015
    Inventors: Vladimir Dmitriev, Uri Stern
  • Publication number: 20140347646
    Abstract: The invention relates to a method for compensating at least one defect of an optical system which comprises introducing an arrangement of local persistent modifications in at least one optical element of the optical system, which does not have pattern elements on one of its optical surfaces, so that the at least one defect is at least partially compensated.
    Type: Application
    Filed: August 12, 2014
    Publication date: November 27, 2014
    Inventors: Vladimir Dmitriev, Ingo Saenger, Frank Schlesener, Markus Mengel, Johannes Ruoff