Patents by Inventor Vladimir Fleurov

Vladimir Fleurov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9148941
    Abstract: A first temperature distribution that represents a temperature of an element adjacent to and distinct from a first optical element that is positioned to receive an amplified light beam is accessed. The accessed first temperature distribution is analyzed to determine a temperature metric associated with the element, the determined temperature metric is compared to a baseline temperature metric, and an adjustment to position of the amplified light beam relative to the first optical element is determined based on the comparison.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: September 29, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Vladimir Fleurov, Igor Fomenkov, Shailendra Srivastava
  • Publication number: 20140203195
    Abstract: A first temperature distribution that represents a temperature of an element adjacent to and distinct from a first optical element that is positioned to receive an amplified light beam is accessed. The accessed first temperature distribution is analyzed to determine a temperature metric associated with the element, the determined temperature metric is compared to a baseline temperature metric, and an adjustment to position of the amplified light beam relative to the first optical element is determined based on the comparison.
    Type: Application
    Filed: January 22, 2013
    Publication date: July 24, 2014
    Applicant: Cymer, Inc.
    Inventors: Vladimir Fleurov, Igor Fomenkov, Shailendra Srivastava
  • Publication number: 20060222034
    Abstract: A high pulse repetition rate gas discharge laser system pulse power system magnetic reactor may comprise a housing comprising a core containing compartment between an inner wall of the housing, an outer wall and a bottom wall of the housing; a cooling mechanism operative to withdraw heat from the at least one of the inner wall, outer wall and bottom of the housing; at least one two magnetic cores contained within the core containing compartment; a cooling fin disposed between each of the at least two magnetic cores; and a thermal conductivity enhancement mechanism intermediate at least one of each respective cooling fin and each respective core and a respective one of the inner wall, the outer wall or the bottom wall, the thermal conductivity enhancement mechanism comprising a band comprising a plurality of torsion spring or leaf spring elements.
    Type: Application
    Filed: March 31, 2005
    Publication date: October 5, 2006
    Applicant: Cymer, Inc.
    Inventors: Richard Ujazdowski, Richard Ness, J. Algots, Vladimir Fleurov, Frederick Palenschat, Walter Gillespie, Bryan Moosman, Thomas Steiger, Brett Smith, Thomas McKelvey
  • Publication number: 20060146906
    Abstract: An apparatus and method is disclosed which may comprise an EUV drive laser system comprising: a solid state seed laser master oscillator laser; a gas discharge excimer laser gain generator producing a drive laser output light beam. The solid state seed laser may comprise a third harmonic Nd:YLF laser, which may be tunable. The gas discharge excimer gain generator laser may comprise a XeF excimer laser power amplifier or power oscillator. The solid state laser may comprise a tunable laser tuned by changing the temperature of a laser crystal comprising the solid state laser, or by utilizing a wavelength selection element, e.g., a Lyot filter or an etalon.
    Type: Application
    Filed: December 29, 2005
    Publication date: July 6, 2006
    Applicant: Cymer, Inc.
    Inventors: Daniel Brown, Alexander Ershov, Vladimir Fleurov, Igor Fomenkov, William Partlo
  • Patent number: 6904073
    Abstract: The present invention provides long life optics for a modular, high repetition rate, ultraviolet gas discharge laser systems producing a high repetition rate high power output beam. The invention includes solutions to a surface damage problem discovered by Applicants on CaF2 optics located in high pulse intensity sections of the output beam of prototype laser systems. Embodiments include an enclosed and purged beam path with beam pointing control for beam delivery of billions of output laser pulses. Optical components and modules described herein are capable of controlling ultraviolet laser output pulses with wavelength less than 200 nm with average output pulse intensities greater than 1.75×106 Watts/cm2 and with peak intensity or greater 3.5×106 Watts/cm2 for many billions of pulses as compared to prior art components and modules which failed after only a few minutes in these pulse intensities.
    Type: Grant
    Filed: March 8, 2003
    Date of Patent: June 7, 2005
    Assignee: Cymer, Inc.
    Inventors: Thomas A. Yager, William N. Partio, Richard L. Sandstrom, Xiaojiang Pan, John T. Melchior, John Martin Algots, Matthew Ball, Alexander I. Ershov, Vladimir Fleurov, Walter D. Gillespie, Holger K. Glatzel, Leonard Lublin, Elizabeth Marsh, Richard G. Morton, Richard C. Ujazdowski, David J. Warkentin, R. Kyle Webb
  • Publication number: 20030219056
    Abstract: The present invention provides long life optics for a modular, high repetition rate, ultraviolet gas discharge laser systems producing a high repetition rate high power output beam. The invention includes solutions to a surface damage problem discovered by Applicants on CaF2 optics located in high pulse intensity sections of the output beam of prototype laser systems. Embodiments include an enclosed and purged beam path with beam pointing control for beam delivery of billions of output laser pulses. Optical components and modules described herein are capable of controlling ultraviolet laser output pulses with wavelength less than 200 nm with average output pulse intensities greater than 1.75×106 Watts/cm2 and with peak intensity or greater 3.5×106 Watts/cm2 for many billions of pulses as compared to prior art components and modules which failed after only a few minutes in these pulse intensities.
    Type: Application
    Filed: March 8, 2003
    Publication date: November 27, 2003
    Inventors: Thomas A. Yager, William N. Partlo, Richard L. Sandstrom, Xiaojiang Pan, John T. Melchior, John Martin Algots, Matthew Ball, Alexander I. Ershov, Vladimir Fleurov, Walter D. Gillespie, Holger K. Glatzel, Leonard Lublin, Elizabeth Marsh, Richard G. Morton, Richard C. Ujazdowski, David J. Warkentin, R. Kyle Webb