Patents by Inventor Vladimir FURLAN
Vladimir FURLAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240413516Abstract: Disclosed is an antenna including a radiating element, a co-planar ground plane element and a transmission line extending across at least a portion of the radiating element and the ground plane element. The transmission line includes a dielectric layer having a portion of a first major surface adjacent to the ground plane and a second major surface opposite and separated from the first surface. A shield is formed on the second major surface. At least one via extends through the dielectric layer to connect the shield to the ground plane. A feed line extends longitudinally through the dielectric layer from a feed point at a proximal end of the transmission line towards a distal end of the transmission line, the feed line being shielded along a portion of its length extending across the ground plane element by the shield.Type: ApplicationFiled: June 13, 2024Publication date: December 12, 2024Inventor: Vladimir FURLAN
-
Publication number: 20240405446Abstract: An antenna array may include a plurality of printed circuit boards (PCBs) oriented in a stacked arrangement, parallel to and spaced apart from one another. Each of the PCBs may include a linear array of antenna elements, which cooperate with the linear arrays of antenna elements on other PCBs to form a two-dimensional array of antenna elements. The PCBs may be supported at one end by a common backplate in a cantilevered manner, with the linear arrays of antenna elements located near the free end of the PCBs. The PCBs may include a thicker portion and a thinner portion, and the thinner portion may include a heat sink or other thermal dissipation structure.Type: ApplicationFiled: May 3, 2024Publication date: December 5, 2024Inventors: Jeffrey Keith Shamblin, Vladimir Furlan, Patrick Carl Frank
-
Patent number: 12015189Abstract: Disclosed is an antenna including a radiating element, a co-planar ground plane element and a transmission line extending across at least a portion of the radiating element and the ground plane element. The transmission line includes a dielectric layer. The dielectric layer has a portion of a first major surface adjacent to the ground plane and a second major surface opposite and separated from the first surface. A shield is formed on the second major surface. At least one via extends through the dielectric layer to connect the shield to the ground plane. A feed line extends longitudinally through the dielectric layer from a feed point at a proximal end of the transmission line towards a distal end of the transmission line, the feed line being shielded along a portion of its length extending across the ground plane element by the shield with the distal end of the transmission line lying in register with the radiating element and coupling the feed line to the radiating element.Type: GrantFiled: November 15, 2022Date of Patent: June 18, 2024Assignee: Taoglas Group Holdings LimitedInventor: Vladimir Furlan
-
Patent number: 11978961Abstract: An antenna array may include a plurality of printed circuit boards (PCBs) oriented in a stacked arrangement, parallel to and spaced apart from one another. Each of the PCBs may include a linear array of antenna elements, which cooperate with the linear arrays of antenna elements on other PCBs to form a two-dimensional array of antenna elements. The PCBs may be supported at one end by a common backplate in a cantilevered manner, with the linear arrays of antenna elements located near the free end of the PCBs. The PCBs may include a thicker portion and a thinner portion, and the thinner portion may include a heat sink or other thermal dissipation structure.Type: GrantFiled: November 15, 2022Date of Patent: May 7, 2024Assignee: Taoglas Group Holdings LimitedInventors: Jeffrey Keith Shamblin, Vladimir Furlan, Patrick Carl Frank
-
Publication number: 20230187809Abstract: Disclosed is an antenna including a radiating element, a co-planar ground plane element and a transmission line extending across at least a portion of the radiating element and the ground plane element. The transmission line includes a dielectric layer. The dielectric layer has a portion of a first major surface adjacent to the ground plane and a second major surface opposite and separated from the first surface. A shield is formed on the second major surface. At least one via extends through the dielectric layer to connect the shield to the ground plane. A feed line extends longitudinally through the dielectric layer from a feed point at a proximal end of the transmission line towards a distal end of the transmission line, the feed line being shielded along a portion of its length extending across the ground plane element by the shield with the distal end of the transmission line lying in register with the radiating element and coupling the feed line to the radiating element.Type: ApplicationFiled: November 15, 2022Publication date: June 15, 2023Inventor: Vladimir FURLAN
-
Publication number: 20230178900Abstract: An antenna array may include a plurality of printed circuit boards (PCBs) oriented in a stacked arrangement, parallel to and spaced apart from one another. Each of the PCBs may include a linear array of antenna elements, which cooperate with the linear arrays of antenna elements on other PCBs to form a two-dimensional array of antenna elements. The PCBs may be supported at one end by a common backplate in a cantilevered manner, with the linear arrays of antenna elements located near the free end of the PCBs. The PCBs may include a thicker portion and a thinner portion, and the thinner portion may include a heat sink or other thermal dissipation structure.Type: ApplicationFiled: November 15, 2022Publication date: June 8, 2023Inventors: Jeffrey Keith Shamblin, Vladimir Furlan, Patrick Carl Frank
-
Patent number: 11509065Abstract: An antenna array may include a plurality of printed circuit boards (PCBs) oriented in a stacked arrangement, parallel to and spaced apart from one another. Each of the PCBs may include a linear array of antenna elements, which cooperate with the linear arrays of antenna elements on other PCBs to form a two-dimensional array of antenna elements. The PCBs may be supported at one end by a common backplate in a cantilevered manner, with the linear arrays of antenna elements located near the free end of the PCBs. The PCBs may include a thicker portion and a thinner portion, and the thinner portion may include a heat sink or other thermal dissipation structure.Type: GrantFiled: June 16, 2020Date of Patent: November 22, 2022Assignee: TAOGLAS GROUP HOLDINGS LIMITEDInventors: Jeffrey Keith Shamblin, Vladimir Furlan, Patrick Carl Frank
-
Patent number: 11509036Abstract: Disclosed is an antenna including a radiating element, a co-planar ground plane element and a transmission line extending across at least a portion of the radiating element and the ground plane element. The transmission line includes a dielectric layer. The dielectric layer has a portion of a first major surface adjacent to the ground plane and a second major surface opposite and separated from the first surface. A shield is formed on the second major surface. At least one via extends through the dielectric layer to connect the shield to the ground plane. A feed line extends longitudinally through the dielectric layer from a feed point at a proximal end of the transmission line towards a distal end of the transmission line, the feed line being shielded along a portion of its length extending across the ground plane element by the shield with the distal end of the transmission line lying in register with the radiating element and coupling the feed line to the radiating element.Type: GrantFiled: February 1, 2021Date of Patent: November 22, 2022Assignee: TAOGLAS GROUP HOLDINGS LIMITEDInventor: Vladimir Furlan
-
Patent number: 11108141Abstract: Disclosed are patch antennas, systems and methods for embedding a patch antenna between two layers, such as two layers of glass. The glass layers may be a vehicle windshield. An embedded portion of an antenna substrate supporting the patch antenna may be embedded between the two layers, and an exposed portion of the antenna substrate may extend outward from the two layers. The embedded portion of the antenna substrate may support the patch antenna, and the exposed portion of the antenna substrate may support a coplanar waveguide and a connector.Type: GrantFiled: September 12, 2019Date of Patent: August 31, 2021Assignee: TAOGLAS GROUP HOLDINGS LIMITEDInventor: Vladimir Furlan
-
Publication number: 20210257711Abstract: Disclosed is an antenna including a radiating element, a co-planar ground plane element and a transmission line extending across at least a portion of the radiating element and the ground plane element. The transmission line includes a dielectric layer. The dielectric layer has a portion of a first major surface adjacent to the ground plane and a second major surface opposite and separated from the first surface. A shield is formed on the second major surface. At least one via extends through the dielectric layer to connect the shield to the ground plane. A feed line extends longitudinally through the dielectric layer from a feed point at a proximal end of the transmission line towards a distal end of the transmission line, the feed line being shielded along a portion of its length extending across the ground plane element by the shield with the distal end of the transmission line lying in register with the radiating element and coupling the feed line to the radiating element.Type: ApplicationFiled: February 1, 2021Publication date: August 19, 2021Applicant: TAOGLAS GROUP HOLDINGS LIMITEDInventor: Vladimir FURLAN
-
Patent number: 10910692Abstract: Disclosed is an antenna including a radiating element, a co-planar ground plane element and a transmission line extending across at least a portion of the radiating element and the ground plane element. The transmission line includes a dielectric layer. The dielectric layer has a portion of a first major surface adjacent to the ground plane and a second major surface opposite and separated from the first surface. A shield is formed on the second major surface. At least one via extends through the dielectric layer to connect the shield to the ground plane. A feed line extends longitudinally through the dielectric layer from a feed point at a proximal end of the transmission line towards a distal end of the transmission line, the feed line being shielded along a portion of its length extending across the ground plane element by the shield with the distal end of the transmission line lying in register with the radiating element and coupling the feed line to the radiating element.Type: GrantFiled: November 15, 2018Date of Patent: February 2, 2021Assignee: TAOGLAS GROUP HOLDINGS LIMITEDInventor: Vladimir Furlan
-
Publication number: 20200395678Abstract: An antenna array may include a plurality of printed circuit boards (PCBs) oriented in a stacked arrangement, parallel to and spaced apart from one another. Each of the PCBs may include a linear array of antenna elements, which cooperate with the linear arrays of antenna elements on other PCBs to form a two-dimensional array of antenna elements. The PCBs may be supported at one end by a common backplate in a cantilevered manner, with the linear arrays of antenna elements located near the free end of the PCBs. The PCBs may include a thicker portion and a thinner portion, and the thinner portion may include a heat sink or other thermal dissipation structure.Type: ApplicationFiled: June 16, 2020Publication date: December 17, 2020Inventors: Jeffrey Keith Shamblin, Vladimir Furlan, Patrick Carl Frank
-
Patent number: 10854980Abstract: A Planar Inverted-F Antenna, PIFA, comprises a sheet of conductive material including first, second, third and fourth contiguous sections, the first and third sections extending orthogonally away from the second section and the fourth section extending away from the third section. The sections are folded relative to one another to define a volume with a heights of the second section, a width of the second section, and a depth of the third section extending away from the second section. A supporting pin and a feed pin extend from the second section along an outer edge. A supporting leg extends from either the third or fourth sections, the supporting leg lying outside the plane of the supporting pin to support the PIFA when mounted on a printed circuit board, while allowing components to at least partially occupy the volume under the PIFA.Type: GrantFiled: September 16, 2019Date of Patent: December 1, 2020Assignee: TAOGLAS GROUP HOLDINGS LIMITEDInventor: Vladimir Furlan
-
Publication number: 20200176859Abstract: Disclosed are patch antennas, systems and methods for embedding a patch antenna between two layers, such as two layers of glass. The glass layers may be a vehicle windshield. An embedded portion of an antenna substrate supporting the patch antenna may be embedded between the two layers, and an exposed portion of the antenna substrate may extend outward from the two layers. The embedded portion of the antenna substrate may support the patch antenna, and the exposed portion of the antenna substrate may support a coplanar waveguide and a connector.Type: ApplicationFiled: September 12, 2019Publication date: June 4, 2020Inventor: Vladimir Furlan
-
Publication number: 20200014111Abstract: A Planar Inverted-F Antenna, PIFA, comprises a sheet of conductive material including first, second, third and fourth contiguous sections, the first and third sections extending orthogonally away from the second section and the fourth section extending away from the third section. The sections are folded relative to one another to define a volume with a heights of the second section, a width of the second section, and a depth of the third section extending away from the second section. A supporting pin and a feed pin extend from the second section along an outer edge. A supporting leg extends from either the third or fourth sections, the supporting leg lying outside the plane of the supporting pin to support the PIFA when mounted on a printed circuit board, while allowing components to at least partially occupy the volume under the PIFA.Type: ApplicationFiled: September 16, 2019Publication date: January 9, 2020Inventor: Vladimir Furlan
-
Patent number: 10418709Abstract: A Planar Inverted-F Antenna, PIFA, comprises a sheet of conductive material including first, second, third and fourth contiguous sections, the first and third sections extending orthogonally away from the second section and the fourth section extending away from the third section. The sections are folded relative to one another to define a volume with a height of the second section, a width of the second section and a depth of the third section extending away from the second section. A supporting pin and a feed pin extend from the second section along an outer edge. A supporting leg extends from either the third or fourth sections, the supporting leg lying outside the plane of the supporting pin to support the PIFA when mounted on a printed circuit board, while allowing components to at least partially occupy the volume under the PIFA.Type: GrantFiled: February 26, 2018Date of Patent: September 17, 2019Assignee: TAOGLAS GROUP HOLDINGS LIMITEDInventor: Vladimir Furlan
-
Publication number: 20190267714Abstract: A Planar Inverted-F Antenna, PIFA, comprises a sheet of conductive material including first, second, third and fourth contiguous sections, the first and third sections extending orthogonally away from the second section and the fourth section extending away from the third section. The sections are folded relative to one another to define a volume with a height of the second section, a width of the second section and a depth of the third section extending away from the second section. A supporting pin and a feed pin extend from the second section along an outer edge. A supporting leg extends from either the third or fourth sections, the supporting leg lying outside the plane of the supporting pin to support the PIFA when mounted on a printed circuit board, while allowing components to at least partially occupy the volume under the PIFA.Type: ApplicationFiled: February 26, 2018Publication date: August 29, 2019Inventor: Vladimir FURLAN
-
Publication number: 20190165447Abstract: Disclosed is an antenna including a radiating element, a co-planar ground plane element and a transmission line extending across at least a portion of the radiating element and the ground plane element. The transmission line includes a dielectric layer. The dielectric layer has a portion of a first major surface adjacent to the ground plane and a second major surface opposite and separated from the first surface. A shield is formed on the second major surface. At least one via extends through the dielectric layer to connect the shield to the ground plane. A feed line extends longitudinally through the dielectric layer from a feed point at a proximal end of the transmission line towards a distal end of the transmission line, the feed line being shielded along a portion of its length extending across the ground plane element by the shield with the distal end of the transmission line lying in register with the radiating element and coupling the feed line to the radiating element.Type: ApplicationFiled: November 15, 2018Publication date: May 30, 2019Applicant: TAOGLAS GROUP HOLDINGS LIMITEDInventor: Vladimir FURLAN
-
Publication number: 20180241135Abstract: The disclosed 20 dBi KSF300. A high gain 5th generation mobile network or wireless system (5G) technology fan beam antenna array offers a wide 3 dB beamwidth for wide angular coverage in azimuth with most of the energy focused within 44° of the main beam. Since propagation losses at Ka band are 20× more than at 6 GHz, the beamwidth of the antenna is reduced when the antenna gain increases. To alleviate this problem, the fan-beam type antenna can be useful to provide simultaneously high gain and wide azimuth coverage.Type: ApplicationFiled: February 23, 2018Publication date: August 23, 2018Inventors: Vladimir FURLAN, Patrick Carl Frank