Patents by Inventor Vladimir Iakovlev

Vladimir Iakovlev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11769989
    Abstract: VCSELs designed to emit light at a characteristic wavelength in a wavelength range of 910-2000 nm and formed on a silicon substrate are provided. Integrated VCSEL systems are also provided that include one or more VCSELs formed on a silicon substrate and one or more electrical, optical, and/or electro-optical components formed and/or mounted onto the silicon substrate. In an integrated VCSEL system, at least one of the one or more electrical, optical, and/or electro-optical components formed and/or mounted onto the silicon substrate is electrically or optically coupled to at least one of the one or more VSCELs on the silicon substrate. Methods for fabricating VCSELs on a silicon substrate and/or fabricating an integrated VCSEL system are also provided.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: September 26, 2023
    Assignee: MELLANOX TECHNOLOGIES, LTD.
    Inventors: Yuri Berk, Vladimir Iakovlev, Isabelle Cestier, Elad Mentovich
  • Patent number: 11764543
    Abstract: An optoelectronic device includes a substrate and first thin film layers disposed on the substrate and patterned to define a vertical-cavity surface-emitting laser (VCSEL), which is configured to emit optical radiation along an optical axis perpendicular to the substrate. Second thin film layers are disposed over the first thin film layers and are patterned to define an optical modulator in which the optical radiation propagates in a direction parallel to the substrate, and an optical coupler configured to couple the optical radiation from the VCSEL into the optical modulator.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: September 19, 2023
    Assignee: MELLANOX TECHNOLOGIES, LTD.
    Inventors: Vladimir Iakovlev, Yuri Berk, Paraskevas Bakopoulos, Elad Mentovich
  • Patent number: 11728623
    Abstract: A vertical-cavity surface-emitting laser (VCSEL) is provided that includes a mesa structure disposed on a substrate. The mesa structure defines an emission axis of the VCSEL. The mesa structure includes a first reflector, a second reflector, and a cascaded active region structure disposed between the first reflector and the second reflector. The cascaded active region structure includes a plurality of cascaded active region layers disposed along the emission axis, where each of the cascade active region layers includes an active region having multi-quantum well and/or dots layers (MQLs), a tunnel junction aligned with the emission axis, and an oxide confinement layer. The oxide confinement layer is disposed between the tunnel junction and MQLs, and has an electrical current aperture defined therein. The mesa structure defines an optical window through which the VCSEL is configured to emit light.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: August 15, 2023
    Assignee: MELLANOX TECHNOLOGIES, LTD.
    Inventors: Yuri Berk, Vladimir Iakovlev, Tamir Sharkaz, Elad Mentovich
  • Patent number: 11721952
    Abstract: A VCSEL includes an active region between a top distributed Bragg reflector (DBR) and a bottom DBR each having alternating GaAs and AlGaAs layers. The active region includes quantum wells (QW) confined between top and bottom GaAs-containing current-spreading layers (CSL), an aperture layer having an optical aperture and a tunnel junction layer above the QW. A GaAs intermediate layer configured to have an open top air gap is disposed over a boundary layer of the active region and the top DBR. The air gap is made wider than the optical aperture and has a height equal to one quarter of VCSEL's emission wavelength in air. The top DBR is attached to the intermediate layer by applying wafer bonding techniques. VCSEL output, the air gap, and the optical aperture are aligned on the same optical axis. The bottom DBR is epitaxially grown on a silicon or a GaAs substrate.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: August 8, 2023
    Assignee: Mellanox Technologies, Ltd.
    Inventors: Itshak Kalifa, Elad Mentovich, Vladimir Iakovlev, Yuri Berk, Tamir Sharkaz
  • Publication number: 20230107350
    Abstract: Various embodiments provide methods for fabricating a couplable electro-optical device. An example method comprises fabricating a pillar on a substrate by forming a lens spacer portion about an electro-optical component fabricated on the substrate; and adhering unshaped lens material to an exposed surface of the pillar. The exposed surface of the pillar is disposed opposite the substrate. The example method further comprises maintaining the unshaped lens material at a reflow temperature for a reflow time to allow the lens material to reflow into a formed lens shape, and curing the lens material to form an integrated lens having the formed lens shape secured to the lens spacer portion and formed about the electro-optical component on the substrate.
    Type: Application
    Filed: November 2, 2021
    Publication date: April 6, 2023
    Inventors: Dimitrios Kalavrouziotis, Yuri Berk, Vladimir Iakovlev, Elad Mentovich, Tamir Sharkaz
  • Patent number: 11611195
    Abstract: Several VCSEL devices for long wavelength applications in wavelength range of 1200-1600 nm are described. These devices include an active region between a semiconductor DBR on a GaAs wafer and a dielectric DBR regrown on the active region. The active region includes multi-quantum layers (MQLs) confined between the active n-InP and p-InAlAs layers and a tunnel junction layer above the MQLs. The semiconductor DBR is fused to the bottom of the active region by a wafer bonding process. The design simplifies integrating the reflectors and the active region stack by having only one wafer bonding followed by regrowth of the other layers including the dielectric DBR. An air gap is fabricated either in an n-InP layer of the active region or in an air gap spacer layer on top of the semiconductor DBR. The air gap enhances optical confinement of the VCSEL. The air gap may also contain a grating.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: March 21, 2023
    Assignee: Mellanox Technologies, Ltd.
    Inventors: Yuri Berk, Vladimir Iakovlev, Tamir Sharkaz, Elad Mentovich, Matan Galanty, Itshak Kalifa
  • Patent number: 11588299
    Abstract: Methods for fabricating vertical cavity surface emitting lasers (VCSELs) on a large wafer are provided. An un-patterned epi layer form is bonded onto a first reflector form. The first reflector form includes a first reflector layer and a wafer of a first substrate type. The un-patterned epi layer form includes a plurality of un-patterned layers on a wafer of a second substrate type. The first and second substrate types have different thermal expansion coefficients. A resulting bonded blank is substantially non-varying in a plane that is normal to an intended emission direction of the VCSEL. A first regrowth is performed to form first regrowth layers, some of which are patterned to form a tunnel junction pattern. A second regrowth is performed to form second regrowth layers. A second reflector form is bonded onto the second regrowth layers, wherein the second reflector form includes a second reflector layer.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: February 21, 2023
    Assignee: Mellanox Technologies, Ltd.
    Inventors: Vladimir Iakovlev, Yuri Berk, Elad Mentovich, Tamir Sharkaz
  • Publication number: 20220376476
    Abstract: Methods for forming an at least partially oxidized confinement layer of a semiconductor device and corresponding semiconductor devices are provided. The method comprises forming two or more layers of a semiconductor device on a substrate. The layers include an exposed layer and a to-be-oxidized layer. The to-be-oxidized layer is disposed between the substrate and the exposed layer. The method further comprises etching, using a masking process, a pattern of holes that extend through the exposed layer at least to a first surface of the to-be-oxidized layer. Each hole of the pattern of holes extends in a direction that is transverse to a level plane that is parallel to the first surface of the to-be-oxidized layer. The method further comprises oxidizing the to-be-oxidized layer through the pattern of holes by exposing the two or more layers of the semiconductor device to an oxidizing gas to form a confinement layer.
    Type: Application
    Filed: May 19, 2021
    Publication date: November 24, 2022
    Inventors: Yuri Berk, Vladimir Iakovlev, Anders Larsson, Itshak Kalifa, Matan Galanty, Isabelle Cestier, Elad Mentovich
  • Publication number: 20220271499
    Abstract: VCSELs designed to emit light at a characteristic wavelength in a wavelength range of 910-2000 nm and formed on a silicon substrate are provided. Integrated VCSEL systems are also provided that include one or more VCSELs formed on a silicon substrate and one or more electrical, optical, and/or electro-optical components formed and/or mounted onto the silicon substrate. In an integrated VCSEL system, at least one of the one or more electrical, optical, and/or electro-optical components formed and/or mounted onto the silicon substrate is electrically or optically coupled to at least one of the one or more VSCELs on the silicon substrate. Methods for fabricating VCSELs on a silicon substrate and/or fabricating an integrated VCSEL system are also provided.
    Type: Application
    Filed: February 24, 2021
    Publication date: August 25, 2022
    Inventors: Yuri Berk, Vladimir Iakovlev, Isabelle Cestier, Elad Mentovich
  • Publication number: 20220246781
    Abstract: Various embodiments of improved PIN-type photodiodes are provided. In an example embodiment, the PIN-type photodiode includes a p-type contact; an n-type contact; a first absorbing layer disposed between the p-type contact and the n-type contact; and a second absorbing layer disposed between the first absorbing layer and the n-type contact. The first absorbing layer is characterized by a first absorption coefficient and the second absorbing layer is characterized by a second absorption coefficient. The second absorption coefficient is greater than the first absorption coefficient. In another example embodiment, the PIN-type photodiode includes a p-type contact; an n-type contact; a first absorbing layer disposed between the p-type contact and the n-type contact; and a non-absorbing accelerating layer disposed between absorbing layers and non-absorbing drift layer and the n-type contact.
    Type: Application
    Filed: February 22, 2021
    Publication date: August 4, 2022
    Inventors: Yuri Berk, Vladimir Iakovlev, Tamir Sharkaz, Elad Mentovich, Matan Galanty, Itshak Kalifa, Paraskevas Bakopoulos
  • Publication number: 20210336418
    Abstract: An optoelectronic device includes a substrate and first thin film layers disposed on the substrate and patterned to define a vertical-cavity surface-emitting laser (VCSEL), which is configured to emit optical radiation along an optical axis perpendicular to the substrate. Second thin film layers are disposed over the first thin film layers and are patterned to define an optical modulator in which the optical radiation propagates in a direction parallel to the substrate, and an optical coupler configured to couple the optical radiation from the VCSEL into the optical modulator.
    Type: Application
    Filed: August 11, 2020
    Publication date: October 28, 2021
    Inventors: Vladimir Iakovlev, Yuri Berk, Paraskevas Bakopoulos, Elad Mentovich
  • Publication number: 20210313770
    Abstract: Methods for fabricating vertical cavity surface emitting lasers (VCSELs) on a large wafer are provided. An un-patterned epi layer form is bonded onto a first reflector form. The first reflector form includes a first reflector layer and a wafer of a first substrate type. The un-patterned epi layer form includes a plurality of un-patterned layers on a wafer of a second substrate type. The first and second substrate types have different thermal expansion coefficients. A resulting bonded blank is substantially non-varying in a plane that is normal to an intended emission direction of the VCSEL. A first regrowth is performed to form first regrowth layers, some of which are patterned to form a tunnel junction pattern. A second regrowth is performed to form second regrowth layers. A second reflector form is bonded onto the second regrowth layers, wherein the second reflector form includes a second reflector layer.
    Type: Application
    Filed: April 7, 2020
    Publication date: October 7, 2021
    Inventors: Vladimir Iakovlev, Yuri Berk, Elad Mentovich, Tamir Sharkaz
  • Publication number: 20210305783
    Abstract: A VCSEL includes an active region between a top distributed Bragg reflector (DBR) and a bottom DBR each having alternating GaAs and AlGaAs layers. The active region includes quantum wells (QW) confined between top and bottom GaAs-containing current-spreading layers (CSL), an aperture layer having an optical aperture and a tunnel junction layer above the QW. A GaAs intermediate layer configured to have an open top air gap is disposed over a boundary layer of the active region and the top DBR. The air gap is made wider than the optical aperture and has a height equal to one quarter of VCSEL's emission wavelength in air. The top DBR is attached to the intermediate layer by applying wafer bonding techniques. VCSEL output, the air gap, and the optical aperture are aligned on the same optical axis. The bottom DBR is epitaxially grown on a silicon or a GaAs substrate.
    Type: Application
    Filed: March 24, 2020
    Publication date: September 30, 2021
    Inventors: Itshak Kalifa, Elad Mentovich, Vladimir Iakovlev, Yuri Berk, Tamir Sharkaz
  • Publication number: 20210184432
    Abstract: A vertical-cavity surface-emitting laser (VCSEL) is provided that includes a mesa structure disposed on a substrate. The mesa structure defines an emission axis of the VCSEL. The mesa structure includes a first reflector, a second reflector, and a cascaded active region structure disposed between the first reflector and the second reflector. The cascaded active region structure includes a plurality of cascaded active region layers disposed along the emission axis, where each of the cascade active region layers includes an active region having multi-quantum well and/or dots layers (MQLs), a tunnel junction aligned with the emission axis, and an oxide confinement layer. The oxide confinement layer is disposed between the tunnel junction and MQLs, and has an electrical current aperture defined therein. The mesa structure defines an optical window through which the VCSEL is configured to emit light.
    Type: Application
    Filed: December 10, 2020
    Publication date: June 17, 2021
    Inventors: Yuri Berk, Vladimir Iakovlev, Tamir Sharkaz, Elad Mentovich
  • Patent number: 10601201
    Abstract: A vertical cavity surface emitting laser (VCSEL) array is provided. Each tunable VCSEL includes an output coupling mirror; a high reflectivity mirror; an active cavity material structure disposed between the output coupling mirror and the high reflectivity mirror; and a spacer layer disposed between the output coupling mirror and the active cavity material. A tuning cavity is defined within the spacer layer. Each VCSEL further includes a first contact pad and a second contact pad designed to receive a driving voltage; a tuning electrode on a first surface of the output coupling mirror for tuning the emission wavelength to a distinct wavelength.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: March 24, 2020
    Assignee: Mellanox Technologies, Ltd.
    Inventors: Alexei Sirbu, Vladimir Iakovlev, Yuri Berk, Sylvie Rockman, Elad Mentovich
  • Patent number: 10461507
    Abstract: A vertical-cavity surface-emitting laser (VCSEL), substrate emitting VCSEL, and multi-beam emitting device and corresponding manufacturing processes are provided. An example VCSEL comprises a substrate having a first surface and a second surface; an output coupling mirror disposed on the second surface of the substrate; a high reflectivity mirror; and an active cavity material structure disposed between the output coupling mirror and the high reflectivity mirror. The active cavity material structure comprises a first current-spreading layer, a second current-spreading layer, an active region disposed between the first current-spreading layer and the second current-spreading layer, and a tunnel junction overgrown by the second current spreading layer, wherein the tunnel junction is disposed adjacent the active region. The VCSEL is configured to emit radiation outward through the first surface of the substrate.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: October 29, 2019
    Assignee: Mellanox Technologies, Ltd.
    Inventors: Alexei Sirbu, Vladimir Iakovlev, Yuri Berk, Elad Mentovich
  • Publication number: 20190312413
    Abstract: A vertical-cavity surface-emitting laser (VCSEL), substrate emitting VCSEL, and multi-beam emitting device and corresponding manufacturing processes are provided. An example VCSEL comprises a substrate having a first surface and a second surface; an output coupling mirror disposed on the second surface of the substrate; a high reflectivity mirror; and an active cavity material structure disposed between the output coupling mirror and the high reflectivity mirror. The active cavity material structure comprises a first current-spreading layer, a second current-spreading layer, an active region disposed between the first current-spreading layer and the second current-spreading layer, and a tunnel junction overgrown by the second current spreading layer, wherein the tunnel junction is disposed adjacent the active region. The VCSEL is configured to emit radiation outward through the first surface of the substrate.
    Type: Application
    Filed: April 4, 2018
    Publication date: October 10, 2019
    Inventors: Alexei Sirbu, Vladimir Iakovlev, Yuri Berk, Elad Mentovich
  • Patent number: 10396527
    Abstract: A vertical-cavity surface-emitting laser (VSCEL) and method for producing a VCSEL are described, the VCSEL including an undercut active region. The active region of the VCSEL is undercut relative to current-spreading layers of the VCSEL, such that a width of a tunnel junction of the VCSEL overgrown by a current spreading layer is less than a width of an active region of the VCSEL, and a width of the active region of the VCSEL is less than a width of the overgrown current-spreading layer, such that the VCSEL including the undercut active region is configured to transmit data at speeds greater than 25 gigabits/second.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: August 27, 2019
    Assignee: Mellanox Technologies, Ltd.
    Inventors: Alexei Sirbu, Vladimir Iakovlev, Yuri Berk, Itshak Kalifa, Elad Mentovich, Sylvie Rockman
  • Publication number: 20180366905
    Abstract: A vertical-cavity surface-emitting laser (VSCEL) and method for producing a VCSEL are described, the VCSEL including an undercut active region. The active region of the VCSEL is undercut relative to current-spreading layers of the VCSEL, such that a width of a tunnel junction of the VCSEL overgrown by a current spreading layer is less than a width of an active region of the VCSEL, and a width of the active region of the VCSEL is less than a width of the overgrown current-spreading layer, such that the VCSEL including the undercut active region is configured to transmit data at speeds greater than 25 gigabits/second.
    Type: Application
    Filed: June 14, 2017
    Publication date: December 20, 2018
    Inventors: Alexei Sirbu, Vladimir Iakovlev, Yuri Berk, Itshak Kalifa, Elad Mentovich, Sylvie Rockman
  • Patent number: 9337615
    Abstract: The present invention concerns new designs of VCLs with high contrast gratings (HCG) combined with diamond layer as a bottom mirror. They can be realized either with a classical V-shaped pumping scenario, or through the introduction of the pumping beam from the bottom direction, through the HCG that can be designed to be transparent at the wavelength of the pumping light. They can also be completed by a HCG combined with diamond layer as top mirror, reflecting the pump diode laser and transparent to the VCL emission in the case the pumped and emitted beams are collinear.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: May 10, 2016
    Assignee: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Vladimir Iakovlev, Pascal Gallo, Elyahou Kapon, Tomasz Czyszanowski, Maciej Dems, Michal Wasiak, Jaroslaw Walczak