Patents by Inventor Vladimir M. Segal

Vladimir M. Segal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170320115
    Abstract: The present invention relates to improvements of equal channel angular extrusion (ECAE). It provides a preservation of billet shape, a simple billet ejection from tool, application of backpressure and minimizes or eliminates flashes and cracks during multi-pass processing. That way, ECAE can be performed at a large scale as a productive and cost effective industrial operation without billet reshaping and preheating between passes.
    Type: Application
    Filed: May 5, 2017
    Publication date: November 9, 2017
    Inventor: Vladimir M. Segal
  • Patent number: 9469892
    Abstract: The invention includes the hot thermo-mechanical processing of heat-treatable aluminum alloys comprising preparation of the billet material, heating the billet to obtain the temperature for solution treatment, holding the billet at this temperature a sufficient amount of time required for the dissolution of soluble elements, cooling the billet to the temperature necessary for plastic deformation with essential preservation of the solid solution, plastic deformation, immediate quenching of the billet after plastic deformation, and then billet aging at the corresponding temperature and time. Additional plastic deformation may be used between stages of quenching and aging. An embodiment specifies cooling rate, forging temperature and strain rate.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: October 18, 2016
    Assignee: ENGINEERED PERFORMANCE MATERIALS COMPANY, LLC
    Inventor: Vladimir M. Segal
  • Publication number: 20120085470
    Abstract: The invention includes the hot thermo-mechanical processing of heat-treatable aluminum alloys comprising preparation of the billet material, heating the billet to obtain the temperature for solution treatment, holding the billet at this temperature a sufficient amount of time required for the dissolution of soluble elements, cooling the billet to the temperature necessary for plastic deformation with essential preservation of the solid solution, plastic deformation, immediate quenching of the billet after plastic deformation, and then billet aging at the corresponding temperature and time. Additional plastic deformation may be used between stages of quenching and aging. An embodiment specifies cooling rate, forging temperature and strain rate.
    Type: Application
    Filed: September 16, 2011
    Publication date: April 12, 2012
    Applicant: ENGINEERED PERFORMANCE MATERIALS COMPANY, LLC
    Inventor: Vladimir M. Segal
  • Patent number: 8028558
    Abstract: The invention presents method and apparatus for forming of large thin panels and similar parts having integral stiffeners at one side of a board. The method includes progressive forming of preheated billets into sculptured dies of corresponding length and width by a forging die of substantially identical width and short length with slightly inclined and flat forging surfaces providing a smoothly convergent working zone, and a periodical transfer of the sculptured die into the working zone between successive strokes of the forging die. Control of the material flow is performed by selection of a ratio of the working zone length to the billet thickness, variable contact friction at both dies and application of additional compressive forces to the billet at ends of the working zone. For semi-continuous processing of very long parts, the sculptured die is composed by plurality of sectioned elements.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: October 4, 2011
    Inventor: Vladimir M. Segal
  • Patent number: 7767043
    Abstract: The invention includes a copper-comprising sputtering target. The target is monolithic or bonded and contains at least 99.99% copper by weight and has an average grain size of from 1 micron to 50 microns. The copper-comprising target has a yield strength of greater than or equal to about 15 ksi and a Brinell hardness (HB) of greater than about 40. The invention includes copper alloy monolithic and bonded sputtering targets consisting essentially of less than or equal to about 99.99% copper by weight and a total amount of alloying element(s) of at least 100 ppm and less than 10% by weight. The targets have an average grain size of from less than 1 micron to 50 microns and have a grain size non-uniformity of less than about 15% standard deviation (1-sigma) throughout the target. The invention additionally includes methods of producing bonded and monolithic copper and copper alloy targets.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: August 3, 2010
    Assignee: Honeywell International Inc.
    Inventors: Vladimir M. Segal, Wuwen Yi, Stephane Ferrasse, Chi tse Wu, Susan D. Strothers, Frank A. Alford, William B. Willett
  • Publication number: 20100059147
    Abstract: The invention includes a copper-comprising sputtering target. The target is monolithic or bonded and contains at least 99.99% copper by weight and has an average grain size of from 1 micron to 50 microns. The copper-comprising target has a yield strength of greater than or equal to about 15 ksi and a Brinell hardness (HB) of greater than about 40. The invention includes copper alloy monolithic and bonded sputtering targets consisting essentially of less than or equal to about 99.99% copper by weight and a total amount of alloying element(s) of at least 100 ppm and less than 10% by weight. The targets have an average grain size of from less than 1 micron to 50 microns and have a grain size non-uniformity of less than about 15% standard deviation (1-sigma) throughout the target. The invention additionally includes methods of producing bonded and monolithic copper and copper alloy targets.
    Type: Application
    Filed: September 22, 2008
    Publication date: March 11, 2010
    Inventors: Vladimir M. Segal, Wuwen Yi, Stephane Ferrasse, Chi tse Wu, Susan D. Strothers, Frank A. Alford, William B. Willett
  • Publication number: 20090113977
    Abstract: The invention presents method and apparatus for forming of large thin panels and similar parts having integral stiffeners at one side of a board. The method includes progressive forming of preheated billets into sculptured dies of corresponding length and width by a forging die of substantially identical width and short length with slightly inclined and flat forging surfaces providing a smoothly convergent working zone, and a periodical transfer of the sculptured die into the working zone between successive strokes of the forging die. Control of the material flow is performed by selection of a ratio of the working zone length to the billet thickness, variable contact friction at both dies and application of additional compressive forces to the billet at ends of the working zone. For semi-continuous processing of very long parts, the sculptured die is composed by plurality of sectioned elements.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 7, 2009
    Inventor: Vladimir M. Segal
  • Publication number: 20090020192
    Abstract: The invention includes a copper-comprising sputtering target. The target is monolithic or bonded and contains at least 99.99% copper by weight and has an average grain size of from 1 micron to 50 microns. The copper-comprising target has a yield strength of greater than or equal to about 15 ksi and a Brinell hardness (HB) of greater than about 40. The invention includes copper alloy monolithic and bonded sputtering targets consisting essentially of less than or equal to about 99.99% copper by weight and a total amount of alloying element(s) of at least 100 ppm and less than 10% by weight. The targets have an average grain size of from less than 1 micron to 50 microns and have a grain size non-uniformity of less than about 15% standard deviation (1-sigma) throughout the target. The invention additionally includes methods of producing bonded and monolithic copper and copper alloy targets.
    Type: Application
    Filed: September 22, 2008
    Publication date: January 22, 2009
    Inventors: Vladimir M. Segal, Wuwen Yi, Stephane Ferrasse, Chi tse Wu, Susan D. Strothers, Frank A. Alford, William B. Willett
  • Patent number: 7380432
    Abstract: The invention comprises a method and apparatus for equal channel angular extrusion (ECAE) of flat billets to control material structure and properties. The improvements of the method include the special systems of billet orientations, billet lubrication, billet ejection from dies, and a press/die control system those eliminate surface cracks, flashes and billet reshaping or deburring between passes. Therefore, multi-pass ECAE becomes a cost-effective industrial operation and may be applied to large billets.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: June 3, 2008
    Assignee: Engineered Performance Materials Co., LLC
    Inventor: Vladimir M. Segal
  • Patent number: 7191630
    Abstract: The invention comprises a method and apparatus for equal channel angular extrusion (ECAE) of flat billets to control material structure and properties. The improvements of the method include the special systems of billet orientations, billet lubrication, billet ejection from dies, and a press/die control system those eliminate surface cracks, flashes and billet reshaping or deburring between passes. Therefore, multi-pass ECAE becomes a cost-effective industrial operation and may be applied to large billets.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: March 20, 2007
    Assignee: Engineered Performance Materials Co., LLC
    Inventor: Vladimir M Segal
  • Patent number: 7096705
    Abstract: A shear-extrusion method of severe plastic deformation for fabrication of metal shapes with ultra-fine structures is described. The improvements of the method include unidirectional shear of any required intensity during one step processing and under high hydrostatic pressures, fabrication of long products with different cross-sections, refinement of low ductile alloys, the increase of productivity and cost reduction. The method can be realized as forward extrusion, backward extrusion, semi continuous extrusion and extrusion of hollow shapes in portal dies with a welding chamber.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: August 29, 2006
    Inventor: Vladimir M. Segal
  • Patent number: 7017382
    Abstract: The invention includes a method of forming an aluminum-comprising physical vapor deposition target. An aluminum-comprising mass is deformed by equal channel angular extrusion. The mass is at least 99.99% aluminum and further comprises less than or equal to about 1,000 ppm of one or more dopant materials comprising elements selected from the group consisting of Ac, Ag, As, B, Ba, Be, Bi, C, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, Ir, La, Lu, Mg, Mn, Mo, N, Nb, Nd, Ni, O, Os, P, Pb, Pd, Pm, Po, Pr, Pt, Pu, Ra, Rf, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn and Zr. After the aluminum-comprising mass is deformed, the mass is shaped into at least a portion of a sputtering target.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: March 28, 2006
    Assignee: Honeywell International Inc.
    Inventors: Vladimir M. Segal, Jianxing Li, Frank Alford, Stephane Ferrasse
  • Patent number: 6946039
    Abstract: The invention includes a physical vapor deposition target composed of a face centered cubic unit cell metal or alloy and having a uniform grain size less than 30 microns, preferably less than 1 micron; and a uniform axial or planar <220> texture. Also described is a method for making sputtering targets. The method can comprise billet preparation; equal channel angular extrusion with a prescribed route and number of passes; and cross-rolling or forging subsequent to the equal channel angular extrusion.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: September 20, 2005
    Assignee: Honeywell International Inc.
    Inventors: Vladimir M. Segal, Stephane Ferrasse, Frank Alford
  • Patent number: 6908517
    Abstract: The invention includes a physical vapor deposition target composed of a face centered cubic unit cell metal or alloy and having a uniform grain size less than 30 microns, preferably less than 1 micron; and a uniform axial or planar <220> texture. Also described is a method for making sputtering targets. The method can comprise billet preparation; equal channel angular extrusion with a prescribed route and number of passes; and cross-rolling or forging subsequent to the equal channel angular extrusion.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: June 21, 2005
    Assignee: Honeywell International Inc.
    Inventors: Vladimir M. Segal, Stephane Ferrasse, Frank Alford
  • Publication number: 20040072009
    Abstract: The invention includes a copper-comprising sputtering target. The target is monolithic or bonded and contains at least 99.99% copper by weight and has an average grain size of from 1 micron to 50 microns. The copper-comprising target has a yield strength of greater than or equal to about 15 ksi and a Brinell hardness (HB) of greater than about 40. The invention includes copper alloy monolithic and bonded sputtering targets consisting essentially of less than or equal to about 99.99% copper by weight and a total amount of alloying element(s) of at least 100 ppm and less than 10% by weight. The targets have an average grain size of from less than 1 micron to 50 microns and have a grain size non-uniformity of less than about 15% standard deviation (1-sigma) throughout the target. The invention additionally includes methods of producing bonded and monolithic copper and copper alloy targets.
    Type: Application
    Filed: July 9, 2003
    Publication date: April 15, 2004
    Inventors: Vladimir M. Segal, Wuwen Yi, Stephane Ferrasse, Chi Tse Wu, Susan D. Strothers, Frank A. Alford, William B. Willett
  • Publication number: 20030121303
    Abstract: A presently-preferred die set for bending a workpiece having a marking at a predetermined location thereon comprises a male die having a substantially v-shaped end portion, a female die having a substantially v-shaped groove formed therein, and a sensor mounted on one of the male and female dies. The sensor is responsive to the marking when the marking is located at a predetermined position in relation to the sensor.
    Type: Application
    Filed: December 28, 2001
    Publication date: July 3, 2003
    Inventors: Arthur L. Lanni, Tri D. Vu, Vladimir M. Segal
  • Publication number: 20020174916
    Abstract: The invention includes a method of forming an aluminum-comprising physical vapor deposition target. An aluminum-comprising mass is deformed by equal channel angular extrusion. The mass is at least 99.99% aluminum and further comprises less than or equal to about 1,000 ppm of one or more dopant materials comprising elements selected from the group consisting of Ac, Ag, As, B, Ba, Be, Bi, C, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, Ir, La, Lu, Mg, Mn, Mo, N, Nb, Nd, Ni, O, Os, P, Pb, Pd, Pm, Po, Pr, Pt, Pu, Ra, Rf, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn and Zr. After the aluminum-comprising mass is deformed, the mass is shaped into at least a portion of a sputtering target.
    Type: Application
    Filed: July 11, 2002
    Publication date: November 28, 2002
    Inventors: Vladimir M. Segal, Jianxing Li, Frank Alford, Stephane Ferrasse
  • Publication number: 20020174917
    Abstract: The invention includes a method of forming an aluminum-comprising physical vapor deposition target. An aluminum-comprising mass is deformed by equal channel angular extrusion. The mass is at least 99.99% aluminum and further comprises less than or equal to about 1,000 ppm of one or more dopant materials comprising elements selected from the group consisting of Ac, Ag, As, B, Ba, Be, Bi, C, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, Ir, La, Lu, Mg, Mn, Mo, N, Nb, Nd, Ni, O, Os, P, Pb, Pd, Pm, Po, Pr, Pt, Pu, Ra, Rf, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn and Zr. After the aluminum-comprising mass is deformed, the mass is shaped into at least a portion of a sputtering target.
    Type: Application
    Filed: July 11, 2002
    Publication date: November 28, 2002
    Inventors: Vladimir M. Segal, Jianxing Li, Frank Alford, Stephane Ferrasse
  • Publication number: 20010047838
    Abstract: The invention includes a method of forming an aluminum-comprising physical vapor deposition target. An aluminum-comprising mass is deformed by equal channel angular extrusion. The mass is at least 99.99% aluminum and further comprises less than or equal to about 1,000 ppm of one or more dopant materials comprising elements selected from the group consisting of Ac, Ag, As, B, Ba, Be, Bi, C, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, Ir, La, Lu, Mg, Mn, Mo, N, Nb, Nd, Ni, O, Os, P, Pb, Pd, Pm, Po, Pr, Pt, Pu, Ra, Rf, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn and Zr. After the aluminum-comprising mass is deformed, the mass is shaped into at least a portion of a sputtering target.
    Type: Application
    Filed: February 13, 2001
    Publication date: December 6, 2001
    Inventors: Vladimir M. Segal, Jianxing Li, Frank Alford, Stephane Ferrasse
  • Patent number: 5850755
    Abstract: Methods and apparatus are described for the plastic deformation of flat rectangular billets. Simultaneous extrusion of two flat rectangular billets through a die having channels of equal cross-sectional area alters billet material structure, texture, and physicomechanical properties without altering billet dimensions. The extrusion system of the present invention prolongs die lifetime, increases punch stability, decreases punch working load and pressure requirements, eliminates the difficulties associated with lubricating movable parts of the die under high pressure and temperature, optimizes use of press space, and provides for automatic and independent ejection of extruded billets from the die. The methods of plastic deformation processing of flat rectangular billets in the present invention allow for the production of a variety of structural, textural, and physicomechanical properties previously unobtainable for large flat rectangular billets.
    Type: Grant
    Filed: February 8, 1995
    Date of Patent: December 22, 1998
    Inventor: Vladimir M. Segal