Patents by Inventor Vladimir Malamud

Vladimir Malamud has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210405206
    Abstract: A light detection and ranging system including a mounting connection of a lens system in a mounting structure, including a lens system mounted in the mounting structure, the mounting connection including that the mounting structure includes at least one alignment opening, and the lens system includes a mounting shaft configured to mount the lens system in the mounting structure, wherein the alignment opening laterally surrounds the mounting shaft at least in part spaced apart in an alignment distance from the mounting shaft in the predefined alignment condition; and a spacer configured to span at least in part the alignment distance, wherein the mounting shaft is fixed in the alignment condition in the alignment opening by a first connection that fixes the spacer to the mounting structure, and by a second connection that fixes the spacer to the mounting shaft.
    Type: Application
    Filed: September 10, 2021
    Publication date: December 30, 2021
    Inventors: Nikolai BERKOVITCH, Vladimir MALAMUD, Konstantin MATYUCH, Yoav MAGRISSO, Gal DVORETZKI, Ron FRIEDMAN, Israel PETRONIUS
  • Patent number: 10574100
    Abstract: An example apparatus for produce magnetic fields includes a base plate comprising a plurality of grooves. The apparatus includes an MEMS device disposed on the base plate. The apparatus further includes a number of magnets to produce one or more magnetic fields disposed on the plurality of grooves and adjacent to the MEMS device.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: February 25, 2020
    Assignee: Intel Corporation
    Inventors: Konstantin Matyuch, Barak Freedman, Vladimir Malamud, Arnon Hirshberg, Israel Petronius
  • Patent number: 10317952
    Abstract: An apparatus is provided which comprises: a chassis compartment having a bottom surface and walls orthogonal to the bottom, wherein the chassis compartment comprises: a rectangular opening, which may be designed to accept a microelectromechanical (MEMS) device and four slots, which may be designed to accept one or more magnet(s), extending outwardly from the rectangular opening, wherein each of the slots comprises: an inner opening having a length coextensive with a side of the rectangular opening, and an outer opening having corresponding ends that extend a length of the outer opening beyond the length of the inner opening. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: June 11, 2019
    Assignee: Intel Corporation
    Inventors: Sandeep S. Iyer, Amanuel Abebaw, Mark Saltas, Mayank Patel, Charavana K. Gurumurthy, Suriyakala Ramalingam, Vladimir Malamud
  • Publication number: 20190002735
    Abstract: Aspects of the embodiments are directed to an optoelectronic device that includes one or more pressure sensitive adhesives to secure components during an assembly process. The optoelectronic device includes an electromagnetic interference/radio frequency interference shield. The shield can include an aperture for permitting light to enter a photodetector. An infrared filter can be secured to the shield using a pressure sensitive adhesive (PSA) film. The PSA film can be a templated film that is double sided. A PSA film can also be used to secure the shield to the printed circuit board (PCB) of the optoelectronic device. To promote electromagnetic conduction between the shield and the PCB, the PSA film can include additives. Aspects of the embodiments are directed to methods for assembling the optoelectronic device by picking and placing a PSA film and applying a pressure to certain components to activate the PSA film adhesion.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 3, 2019
    Applicant: Intel Corporation
    Inventors: Mohit Gupta, Anna M. Prakash, Vladimir Malamud, Mark Saltas, Ziv Belman
  • Publication number: 20180342463
    Abstract: In various embodiments this disclosure is directed to conductive adhesives layers that can be used, in one example embodiment, to connect one or more shielding structures (for example, metal cans and/or covers) to a semiconductor package to enclose one or more electronic components on the semiconductor package. In another embodiment, the conductive adhesive layers disclosed herein can be used in connection with optoelectronic devices (for example, optoelectronic devices including laser diodes and/or avalanche photodiodes, APDs). In one embodiment, the conductive adhesives can additionally be used for thermal dissipation and for electrical contact in connection with one or more electronic components on a semiconductor package. In one embodiment, various materials including, spray prints, conductive paste, inks (for example, sintering silver-based materials), epoxy material (for example, epoxy materials filled with silver and/or other metal particles) can be used to provide a conductive adhesive layer.
    Type: Application
    Filed: July 13, 2018
    Publication date: November 29, 2018
    Inventors: Taylor GAINES, Anna M. PRAKASH, Suriyakala RAMALINGAM, Boxi LIU, Mohit GUPTA, Ziv BELMAN, Baruch SCHIFFMANN, Arnon HIRSHBERG, Vladimir MALAMUD, Ron WITTENBERG
  • Publication number: 20180235075
    Abstract: Semiconductor packages may include different portions associated one or more electronic components of the semiconductor package where electromagnetic (for example, radio-frequency, RF) shielding at predetermined frequencies ranges may be needed. Accordingly, in an embodiment, compartmental shielding can be used in the areas between the electronic components on the semiconductor package to provide RF shielding to the electronic components on the semiconductor package or to other electronic components in proximity to the electronic components on the semiconductor package. Further, in another embodiment, conformal coating shielding can be used to provide RF shielding to provide RF shielding to the electronic components on the semiconductor package or to other electronic components in proximity to the electronic components on the semiconductor package.
    Type: Application
    Filed: February 16, 2017
    Publication date: August 16, 2018
    Inventors: Taylor Gaines, Anna M. Prakash, Ziv Belman, Baruch Schiffmann, Arnon Hirshberg, Ron Wittenberg, Vladimir Malamud
  • Publication number: 20180190593
    Abstract: In various embodiments this disclosure is directed to conductive adhesives layers that can be used, in one example embodiment, to connect one or more shielding structures (for example, metal cans and/or covers) to a semiconductor package to enclose one or more electronic components on the semiconductor package. In another embodiment, the conductive adhesive layers disclosed herein can be used in connection with optoelectronic devices (for example, optoelectronic devices including laser diodes and/or avalanche photodiodes, APDs). In one embodiment, the conductive adhesives can additionally be used for thermal dissipation and for electrical contact in connection with one or more electronic components on a semiconductor package. In one embodiment, various materials including, spray prints, conductive paste, inks (for example, sintering silver-based materials), epoxy material (for example, epoxy materials filled with silver and/or other metal particles) can be used to provide a conductive adhesive layer.
    Type: Application
    Filed: December 30, 2016
    Publication date: July 5, 2018
    Inventors: Taylor GAINES, Anna M. PRAKASH, Suriyakala RAMALINGAM, Boxi LIU, Mohit GUPTA, Ziv BELMAN, Baruch SCHIFFMANN, Arnon HIRSHBERG, Vladimir MALAMUD, Ron WITTENBERG
  • Publication number: 20180095503
    Abstract: An apparatus is provided which comprises: a chassis compartment having a bottom surface and walls orthogonal to the bottom, wherein the chassis compartment comprises: a rectangular opening, which may be designed to accept a microelectromechanical (MEMS) device and four slots, which may be designed to accept one or more magnet(s), extending outwardly from the rectangular opening, wherein each of the slots comprises: an inner opening having a length coextensive with a side of the rectangular opening, and an outer opening having corresponding ends that extend a length of the outer opening beyond the length of the inner opening. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: Sandeep S. IYER, Amanuel ABEBAW, Mark SALTAS, Mayank PATEL, Charavana K. GURUMURTHY, Suriyakala RAMALINGAM, Vladimir MALAMUD
  • Publication number: 20170288479
    Abstract: An example apparatus for produce magnetic fields includes a base plate comprising a plurality of grooves. The apparatus includes an MEMS device disposed on the base plate. The apparatus further includes a number of magnets to produce one or more magnetic fields disposed on the plurality of grooves and adjacent to the MEMS device.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 5, 2017
    Applicant: Intel Corporation
    Inventors: Konstantin Matyuch, Barak Freedman, Vladimir Malamud, Arnon Hirshberg, Israel Petronius