Patents by Inventor Vladimir Moxson

Vladimir Moxson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8388727
    Abstract: The invention relates to the manufacture of titanium hydride powder using continuous or semi-continuous process, and using titanium slag or synthetic rutile as raw materials, while hydrogen, titanium tetrachloride, titanium trichloride, titanium dichloride, and hydrogen chloride are participate as intermediate reaction products. The continuous comprises: (a) reduction of TiCl4 to low titanium chlorides followed by cooling a mixture, (b) separating of residual TiCl4 from solid low chlorides by heating the mixture in argon or vacuum up to 150° C. followed by removing the titanium tetrachloride from the mixture, (c) dissociation of TiCl3 to TiCl2 at 450° C. in vacuum followed by removal of gaseous titanium tetrachloride from the reaction zone, condensation to the liquid, and returning back into the reaction retort, (d) dissociation of TiCl2 in vacuum at 750-850° C. to manufacture fine powder of metallic titanium and titanium tetrachloride, whereby hydrogen heated up to 1000° C.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: March 5, 2013
    Assignee: ADMA Products, Inc.
    Inventors: Andrey Klevtsov, Alexander Nikishin, Jury Shuvalov, Vladimir Moxson, Volodymyr Duz
  • Publication number: 20110293461
    Abstract: The method for manufacturing high-strength discontinuously-reinforced titanium matrix composite comprises the following steps: (a) preparing a basic powdered blend containing the matrix alloy or titanium powders having a particle size <250 ?m for 95% of the powder and powders, which reinforcing matrix during high-temperature operations, such as blended elemental reinforcing powders, ceramic powders, intermetallic powders, and/or powders of complex carbide- and/or boride particles that are at least partially soluble in the matrix, (b) preparing reinforcing powders by co-attrition, mechanical alloying, or pre-sintering of blended elemental powders with each other and graphite, (c) mixing the basic powdered blend with the Al-V master alloy powder, and co-attrited, mechanically-alloyed powders, and pre-sintered powders in the predetermined ratio to obtain a chemical composition of titanium matrix composite material, (d) compacting the powder mixture at room temperature by any of room temperature consolidation
    Type: Application
    Filed: August 9, 2011
    Publication date: December 1, 2011
    Applicant: ADMA Products, Inc.
    Inventors: Volodymyr DUZ, Vladimir Moxson, Alexander Shapiro
  • Publication number: 20110171116
    Abstract: The invention relates to the manufacture of titanium hydride powder using continuous or semi-continuous process, and using titanium slag or synthetic rutile as raw materials, while hydrogen, titanium tetrachloride, titanium trichloride, titanium dichloride, and hydrogen chloride are participate as intermediate reaction products. The continuous comprises: (a) reduction of TiCl4 to low titanium chlorides followed by cooling a mixture, (b) separating of residual TiCl4 from solid low chlorides by heating the mixture in argon or vacuum up to 150° C. followed by removing the titanium tetrachloride from the mixture, (c) dissociation of TiCl3 to TiCl2 at 450° C. in vacuum followed by removal of gaseous titanium tetrachloride from the reaction zone, condensation to the liquid, and returning back into the reaction retort, (d) dissociation of TiCl2 in vacuum at 750-850° C. to manufacture fine powder of metallic titanium and titanium tetrachloride, whereby hydrogen heated up to 1000° C.
    Type: Application
    Filed: January 11, 2010
    Publication date: July 14, 2011
    Applicant: Advance Materials Products, Inc., USA
    Inventors: Andrey Klevtsov, Alexander Nikishin, Jury Shuvalov, Vladimir Moxson, Volodymyr Duz
  • Publication number: 20070269331
    Abstract: The invention is suitable for the manufacture of flat or shaped titanium matrix composite articles having improved mechanical properties such as lightweight plates and sheets for aircraft and automotive applications, heat-sinking lightweight electronic substrates, bulletproof structures for vests, partition walls and doors, as well as for sporting goods such as helmets, golf clubs, sole plates, crown plates, etc. A fully-dense discontinuously-reinforced titanium matrix composite (TMMC) material comprises (a) a matrix of titanium or titanium alloy as a major component, (b) ceramic and/or intermetallic hard particles dispersed in the matrix in the amount of ?50 vol. %, and (c) complex carbide- and/or silicide particles at least partially soluble in the matrix at the sintering or forging temperatures such as Ti4Cr3C6, Ti3SiC2, Cr3C2, Ti3AlC2, Ti2AlC, Al4C3, Al4SiC4, Al4Si2C5, Al8SiC7, V2C, (Ti,V)C, VCr2C2, and V2Cr4C3 dispersed in the matrix in the amount of ?20 vol. %.
    Type: Application
    Filed: December 27, 2003
    Publication date: November 22, 2007
    Applicant: Advance Materials Products, Inc. (ADMA Products, Inc.)
    Inventors: Vladimir Moxson, Volodymyr Duz, Alexander Shapiro
  • Publication number: 20060147333
    Abstract: The present invention relates to the manufacture of fully dense strips, plates, sheets, and foils of titanium alloys, titanium metal matrix composites, titanium aluminides, and flat multilayer composites of said materials manufactured by direct rolling and sintering of blended powders. The resulting titanium alloy flat products are suitable in the aerospace, automotive, sporting goods, and other industries. The process includes the following steps: (a) providing a C.P.
    Type: Application
    Filed: December 30, 2004
    Publication date: July 6, 2006
    Applicant: Advance Materials Products, Inc. (ADMC Products, Inc.)
    Inventors: Vladimir Moxson, Volodymyr Duz