Patents by Inventor Vladimir Rodov

Vladimir Rodov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11916138
    Abstract: A sacrificial substrate wafer is provided. A low resistivity etch stop layer is formed on or in the top surface of the wafer. The etch stop layer may be a highly doped, p+ type epitaxially grown layer, or an implanted p+ type boron layer, or an epitaxially grown p+ type SiGe layer. Various epitaxial layers, such as an n? type drift layer, and doped regions are then formed over the etch stop layer to form a vertical power device. The starting wafer is then removed by a combination of mechanical grinding/polishing to leave a thinner layer of the starting wafer. A chemical or plasma etch is then used to remove the remainder of the starting wafer, using the etch stop layer to automatically stop the etching. A bottom metal electrode is then formed on the etch stop layer. The etch stop layer injects hole carriers into the drift layer.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: February 27, 2024
    Assignee: PAKAL TECHNOLOGIES, INC
    Inventors: Paul M Moore, Vladimir Rodov, Richard A Blanchard
  • Patent number: 11824092
    Abstract: In an insulated trench gate device, polysilicon in the trench is etched below the top surface of the trench, leaving a thin gate oxide layer exposed near the top of the trench. An angled implant is conducted that implants dopants through the exposed gate oxide and into the side of the trench. If the implanted dopants are n-type, this technique may be used to extend an n+ source region to be below the top of the polysilicon in the trench. If the implanted dopants are p?type, the dopants may be used to form a p-MOS device that turns on when the polysilicon is biased with a negative voltage. P-MOS and n-MOS devices can be formed in a single cell using this technique, where turning on the n-MOS device turns on a vertical power switch, and turning on the p-MOS device turns off the power switch.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: November 21, 2023
    Assignee: PAKAL TECHNOLOGIES, INC
    Inventors: Paul M. Moore, Vladimir Rodov, Richard A. Blanchard
  • Patent number: 11757017
    Abstract: After the various regions of a vertical power device are formed in or on the top surface of an n-type wafer, the wafer is thinned, such as by grinding. A drift layer may be n-type, and various n-type regions and p-type regions in the top surface contact a top metal electrode. A blanket dopant implant through the bottom surface of the thinned wafer is performed to form an n? buffer layer and a bottom p+ emitter layer. Energetic particles are injected through the bottom surface to intentionally damage the crystalline structure. A wet etch is performed, which etches the damaged crystal at a much greater rate, so some areas of the n? buffer layer are exposed. The bottom surface is metallized. The areas where the metal contacts the n? buffer layer form cathodes of an anti-parallel diode for conducting reverse voltages, such as voltage spikes from inductive loads.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: September 12, 2023
    Assignee: PAKAL TECHNOLOGIES, INC
    Inventors: Paul M Moore, Vladimir Rodov, Richard A Blanchard
  • Patent number: 11610987
    Abstract: An npnp layered switch is modified to have a composite anode structure. Instead of the continuous p-type bottom anode layer of a typical npnp IGTO device, thyristor, or IGBT, the composite anode is formed of a segmented p-type layer with gaps containing n-type semiconductor material. The n-type material forms a majority carrier path between the bottom anode electrode and the n-type collector of the vertical npn bipolar transistor. When a trenched gate is biased high, the majority carrier path is created between the bottom anode electrode and the top cathode electrode. Such a current path operates at very low operating voltages, starting at slightly above 0 volts. Above operating voltages of about 1.0 volts, the npnp layered switch operates normally and uses regenerative bipolar transistor action to conduct a vast majority of the current. The two current paths conduct in parallel.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: March 21, 2023
    Assignee: PAKAL TECHNOLOGIES, INC
    Inventors: Paul M Moore, Vladimir Rodov, Richard A Blanchard
  • Publication number: 20230032610
    Abstract: In a vertical power device with trenched insulated gates, there is an npnp layered structure. The vertical gates turn on the device with a suitable gate bias to conduct a current between a top electrode and a bottom electrode. In an example, implanted n+ source regions are formed in the top surface within a p-well. Between some gates, the overlying dielectric is opened up, by etching, to expose distributed p-type contact regions for the p-well. The dielectric is also opened up to expose areas of the n+ source regions. The top electrode metal directly contacts the exposed p-type contact regions and the n+ source regions to provide distributed emitter-to-base short across the cellular array to improve device performance in the presence of transients. The p-contact regions are isolated from the n+ source regions, prior to the deposition of the metal electrode, due to the p-type contact regions not abutting the n+ source regions.
    Type: Application
    Filed: May 18, 2022
    Publication date: February 2, 2023
    Inventors: Paul M. Moore, Richard A. Blanchard, Vladimir Rodov
  • Publication number: 20220376095
    Abstract: An npnp layered switch is modified to have a composite anode structure. Instead of the continuous p-type bottom anode layer of a typical npnp IGTO device, thyristor, or IGBT, the composite anode is formed of a segmented p-type layer with gaps containing n-type semiconductor material. The n-type material forms a majority carrier path between the bottom anode electrode and the n-type collector of the vertical npn bipolar transistor. When a trenched gate is biased high, the majority carrier path is created between the bottom anode electrode and the top cathode electrode. Such a current path operates at very low operating voltages, starting at slightly above 0 volts. Above operating voltages of about 1.0 volts, the npnp layered switch operates normally and uses regenerative bipolar transistor action to conduct a vast majority of the current. The two current paths conduct in parallel.
    Type: Application
    Filed: November 30, 2021
    Publication date: November 24, 2022
    Inventors: Paul M Moore, Vladimir Rodov, Richard A Blanchard
  • Publication number: 20220344493
    Abstract: After the various regions of a vertical power device are formed in or on the top surface of an n-type wafer, the wafer is thinned, such as by grinding. A drift layer may be n-type, and various n-type regions and p-type regions in the top surface contact a top metal electrode. A blanket dopant implant through the bottom surface of the thinned wafer is performed to form an n? buffer layer and a bottom p+ emitter layer. Energetic particles are injected through the bottom surface to intentionally damage the crystalline structure. A wet etch is performed, which etches the damaged crystal at a much greater rate, so some areas of the n? buffer layer are exposed. The bottom surface is metallized. The areas where the metal contacts the n? buffer layer form cathodes of an anti-parallel diode for conducting reverse voltages, such as voltage spikes from inductive loads.
    Type: Application
    Filed: April 20, 2022
    Publication date: October 27, 2022
    Inventors: Paul M. Moore, Vladimir Rodov, Richard A Blanchard
  • Publication number: 20220344498
    Abstract: A sacrificial substrate wafer is provided. A low resistivity etch stop layer is formed on or in the top surface of the wafer. The etch stop layer may be a highly doped, p+ type epitaxially grown layer, or an implanted p+ type boron layer, or an epitaxially grown p+ type SiGe layer. Various epitaxial layers, such as an n? type drift layer, and doped regions are then formed over the etch stop layer to form a vertical power device. The starting wafer is then removed by a combination of mechanical grinding/polishing to leave a thinner layer of the starting wafer. A chemical or plasma etch is then used to remove the remainder of the starting wafer, using the etch stop layer to automatically stop the etching. A bottom metal electrode is then formed on the etch stop layer. The etch stop layer injects hole carriers into the drift layer.
    Type: Application
    Filed: April 20, 2022
    Publication date: October 27, 2022
    Inventors: Paul M. Moore, Vladimir Rodov, Richard A. Blanchard
  • Patent number: 11437989
    Abstract: A design technique is disclosed that divides up a cellular power switch into different size segments. Each segment is driven by a different driver circuit. The selection of the combination of segments is made to minimize the combined conduction and switching losses of the power switch. For example, for very light loads, switching losses dominate so only a small segment is activated for driving the load. For medium and high load currents, conduction losses become more significant, so additional segments are activated to minimize the total losses. In one embodiment, the number of cells in the segments is binary weighted, such as 1×, 2×, and 4×, so that there are seven different combinations of segments. The drivers may be configured to achieve the same or different slew rates of the segments, such as to reduce transients. The segments may all be in the same die or a plurality of dies.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: September 6, 2022
    Assignee: PAKAL TECHNOLOGIES, INC
    Inventors: Paul M. Moore, Richard A. Blanchard, Vladimir Rodov, Gary M. Hurtz
  • Patent number: 11393901
    Abstract: An insulated gate turn-off (IGTO) device, formed as a die, has a layered structure including a p+ layer (e.g., a substrate), an n? epi layer, a p-well, trenched insulated gate regions formed in the p-well, and n+ regions between the gate regions, so that vertical NPN and PNP transistors are formed. The device may be formed of a matrix of cells or may be interdigitated. To turn the device on, a positive voltage is applied to the gate, referenced to the cathode. The cells further contain a vertical p-channel MOSFET, for rapidly turning the device off. The p-channel MOSFET may be made a depletion mode device by implanting boron ions at an angle into the trenches to create a p-channel. This allows the IGTO device to be turned off with a zero gate voltage while in a latch-up condition, when the device is acting like a thyristor.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: July 19, 2022
    Assignee: PAKAL TECHNOLOGIES, INC
    Inventors: Richard A. Blanchard, Hidenori Akiyama, Vladimir Rodov, Woytek Tworzydlo
  • Publication number: 20220045205
    Abstract: A power device is divided into an active area, an active area perimeter, and a termination region. An array of insulated gates formed in trenches form cells in a p-well body, where n+ source regions are formed in the top surface of the silicon wafer and surround the tops of the trenches. A top cathode electrode contacts the source regions, and an anode electrode is on the bottom of the die. A sufficiently high reverse voltage causes a breakdown current to flow between the anode and cathode electrodes. To ensure that a reverse breakdown voltage current occurs away from the gate oxide and/or the termination region, the active area and the active area perimeter of the p-well are additionally doped with p-type dopants to form deep p+ regions in selected areas that extend below the trenches. The deep p+ regions channel the breakdown current away from active cells and the termination region.
    Type: Application
    Filed: July 29, 2021
    Publication date: February 10, 2022
    Inventors: Richard A. Blanchard, Paul M. Moore, Vladimir Rodov, Gary M. Hurtz
  • Publication number: 20220045674
    Abstract: A design technique is disclosed that divides up a cellular power switch into different size segments. Each segment is driven by a different driver circuit. The selection of the combination of segments is made to minimize the combined conduction and switching losses of the power switch. For example, for very light loads, switching losses dominate so only a small segment is activated for driving the load. For medium and high load currents, conduction losses become more significant, so additional segments are activated to minimize the total losses. In one embodiment, the number of cells in the segments is binary weighted, such as 1×, 2×, and 4×, so that there are seven different combinations of segments. The drivers may be configured to achieve the same or different slew rates of the segments, such as to reduce transients. The segments may all be in the same die or a plurality of dies.
    Type: Application
    Filed: July 29, 2021
    Publication date: February 10, 2022
    Inventors: Paul M. Moore, Richard A. Blanchard, Vladimir Rodov, Gary M. Hurtz
  • Publication number: 20220045168
    Abstract: In an insulated trench gate device, polysilicon in the trench is etched below the top surface of the trench, leaving a thin gate oxide layer exposed near the top of the trench. An angled implant is conducted that implants dopants through the exposed gate oxide and into the side of the trench. If the implanted dopants are n-type, this technique may be used to extend an n+ source region to be below the top of the polysilicon in the trench. If the implanted dopants are p-type, the dopants may be used to form a p-MOS device that turns on when the polysilicon is biased with a negative voltage. P-MOS and n-MOS devices can be formed in a single cell using this technique, where turning on the n-MOS device turns on a vertical power switch, and turning on the p-MOS device turns off the power switch.
    Type: Application
    Filed: July 29, 2021
    Publication date: February 10, 2022
    Inventors: Paul M. Moore, Vladimir Rodov, Richard A. Blanchard
  • Patent number: 11145717
    Abstract: A high power vertical insulated-gate switch is described that includes a parallel cell array having inner cells and an edge cell. The cells have a vertical npnp structure with a trenched field effect device that turns the device on and off. The edge cell is prone to breaking down at high currents. Techniques used to cause the current in the edge cell to be lower than the current in the inner cells, to improve robustness, include: forming a top n-type source region to not extend completely across opposing trenches in areas of the edge cell; forming the edge cell to have a threshold voltage of its field effect device that is greater than the threshold voltage of the field effect devices in the inner cells; and providing a resistive layer between the edge cell and a top cathode electrode electrically contacting the inner cells and the edge cell.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: October 12, 2021
    Assignee: Pakal Technologies, Inc.
    Inventors: Richard A. Blanchard, Vladimir Rodov, Woytek Tworzydlo, Hidenori Akiyama
  • Patent number: 11114553
    Abstract: A lateral insulated gate turn-off device includes an n-drift layer, a p-well formed in the n? drift layer, a shallow n+ type region formed in the well, a shallow p+ type region formed in the well, a cathode electrode shorting the n+ type region to the p+ type region, a trenched first gate extending through the n+ type region and into the well, a p+ type anode region laterally spaced from the well, an anode electrode electrically contacting the p+ type anode region, and a trenched second gate extending from the p+ type anode region into the n-drift layer. For turning the device on, a positive voltage is applied to the first gate the reduce the base width of the npn transistor, and a negative voltage is applied to the second gate to effectively extend the p+ emitter of the pnp transistor further into the n-drift layer to improve performance.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: September 7, 2021
    Assignee: Pakal Technologies, Inc.
    Inventors: Richard A. Blanchard, Vladimir Rodov
  • Publication number: 20210028279
    Abstract: An insulated gate turn-off (IGTO) device, formed as a die, has a layered structure including a p+ layer (e.g., a substrate), an n? epi layer, a p-well, trenched insulated gate regions formed in the p-well, and n+ regions between the gate regions, so that vertical NPN and PNP transistors are formed. The device may be formed of a matrix of cells or may be interdigitated. To turn the device on, a positive voltage is applied to the gate, referenced to the cathode. The cells further contain a vertical p-channel MOSFET, for rapidly turning the device off. The p-channel MOSFET may be made a depletion mode device by implanting boron ions at an angle into the trenches to create a p-channel. This allows the IGTO device to be turned off with a zero gate voltage while in a latch-up condition, when the device is acting like a thyristor.
    Type: Application
    Filed: September 1, 2020
    Publication date: January 28, 2021
    Inventors: Richard A. Blanchard, Hidenori Akiyama, Vladimir Rodov, Woytek Tworzydlo
  • Patent number: 10903311
    Abstract: A diode includes upper and lower electrodes and first and second N-type doped semiconductor substrate portions connected to the lower electrode. A first vertical transistor and a second transistor are formed in the first portion and series-connected between the electrodes. The gate of the first transistor is N-type doped and coupled to the upper electrode. The second transistor has a P channel and has a P-type doped gate. First and second doped areas of the second conductivity type are located in the second portion and are separated by a substrate portion topped with another N-type doped gate. The first doped area is coupled to the gate of the second transistor. The second doped area and the other gate are coupled to the upper electrode.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: January 26, 2021
    Assignee: STMICROELECTRONICS (TOURS) SAS
    Inventors: Frédéric Lanois, Alexei Ankoudinov, Vladimir Rodov
  • Patent number: 10797131
    Abstract: An insulated gate turn-off (IGTO) device, formed as a die, has a layered structure including a p+ layer (e.g., a substrate), an n? epi layer, a p-well, trenched insulated gate regions formed in the p-well, and n+ regions between the gate regions, so that vertical NPN and PNP transistors are formed. The device may be formed of a matrix of cells or may be interdigitated. To turn the device on, a positive voltage is applied to the gate, referenced to the cathode. The cells further contain a vertical p-channel MOSFET, for rapidly turning the device off. The p-channel MOSFET may be made a depletion mode device by implanting boron ions at an angle into the trenches to create a p-channel. This allows the IGTO device to be turned off with a zero gate voltage while in a latch-up condition, when the device is acting like a thyristor.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: October 6, 2020
    Assignee: Pakal Technologies, Inc.
    Inventors: Richard A. Blanchard, Hidenori Akiyama, Vladimir Rodov, Woytek Tworzydlo
  • Publication number: 20200312987
    Abstract: A lateral insulated gate turn-off device includes an n-drift layer, a p-well formed in the n? drift layer, a shallow n+ type region formed in the well, a shallow p+ type region formed in the well, a cathode electrode shorting the n+ type region to the p+ type region, a trenched first gate extending through the n+ type region and into the well, a p+ type anode region laterally spaced from the well, an anode electrode electrically contacting the p+ type anode region, and a trenched second gate extending from the p+ type anode region into the n-drift layer. For turning the device on, a positive voltage is applied to the first gate the reduce the base width of the npn transistor, and a negative voltage is applied to the second gate to effectively extend the p+ emitter of the pnp transistor further into the n-drift layer to improve performance.
    Type: Application
    Filed: March 11, 2020
    Publication date: October 1, 2020
    Inventors: Richard A. Blanchard, Vladimir Rodov
  • Publication number: 20200105873
    Abstract: A high power vertical insulated-gate switch is described that includes a parallel cell array having inner cells and an edge cell. The cells have a vertical npnp structure with a trenched field effect device that turns the device on and off. The edge cell is prone to breaking down at high currents. Techniques used to cause the current in the edge cell to be lower than the current in the inner cells, to improve robustness, include: forming a top n-type source region to not extend completely across opposing trenches in areas of the edge cell; forming the edge cell to have a threshold voltage of its field effect device that is greater than the threshold voltage of the field effect devices in the inner cells; and providing a resistive layer between the edge cell and a top cathode electrode electrically contacting the inner cells and the edge cell.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 2, 2020
    Inventors: Richard A. Blanchard, Vladimir Rodov, Woytek Tworzydlo, Hidenori Akiyama