Patents by Inventor Vladimir Samuilov

Vladimir Samuilov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11721494
    Abstract: A supercapacitor apparatus within a sealed housing to provide a high-voltage EDLC energy storage unit includes cells stacked on one another, with each cell having a set of supercapacitors that are interconnected within the apparatus in a parallel-series configuration to provide an internally balanced energy storage unit that is capable of stand-off voltages of 10 volts or higher. The energy storage unit does not require balancing resistors or more complicated external balancing circuitry. The electrodes of the supercapacitors are comprised of carbon nanotubes and graphene nanoplatelets.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: August 8, 2023
    Assignee: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK
    Inventors: Vladimir Samuilov, Vyacheslav Solovyov, Zemfira Abutalibova
  • Publication number: 20210383983
    Abstract: A supercapacitor apparatus within a sealed housing to provide a high-voltage EDLC energy storage unit includes cells stacked on one another, with each cell having a set of supercapacitors that are interconnected within the apparatus in a parallel-series configuration to provide an internally balanced energy storage unit that is capable of stand-off voltages of 10 volts or higher. The energy storage unit does not require balancing resistors or more complicated external balancing circuitry. The electrodes of the supercapacitors are comprised of carbon nanotubes and graphene nanoplatelets.
    Type: Application
    Filed: August 19, 2021
    Publication date: December 9, 2021
    Inventors: Vladimir Samuilov, Vyacheslav Solovyov, Zemfira Abutalibova
  • Patent number: 11127538
    Abstract: A supercapacitor apparatus within a sealed housing to provide a high-voltage EDLC energy storage unit includes cells stacked on one another, with each cell having a set of supercapacitors that are interconnected within the apparatus in a parallel-series configuration to provide an internally balanced energy storage unit that is capable of stand-off voltages of 10 volts or higher. The energy storage unit does not require balancing resistors or more complicated external balancing circuitry. The electrodes of the supercapacitors are comprised of carbon nanotubes and graphene nanoplatelets.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: September 21, 2021
    Assignee: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK
    Inventors: Vladimir Samuilov, Vyacheslav Solovyov, Zemfira Abutalibova
  • Patent number: 10876904
    Abstract: A system, a method of use, and a Carbon Nanotube (CNT) condensation sensor for determining a dew point and/or ice point is provided. For example, a sensing system may include a thermal device configured to generate heating or cooling to change a temperature of a surface, a temperature sensor for measuring the temperature of the surface, a controller configured to control the thermal device, a carbon nanotube (CNT) condensation sensor mounted on the surface having a moisture sensitive resistance and a processor configured to determine one or more parameters based on the moisture sensitive resistance of the CNT condensation sensor and the temperature measured by the temperature sensor. The one or more parameter can be used to determine the dew point and/or ice point. A method for forming a carbon nanotube (CNT) condensation sensor is also provided.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: December 29, 2020
    Assignees: The Research Foundation for The State University of New York, Cosa Xentaur
    Inventors: Vladimir Samuilov, John Lewis Ayres
  • Publication number: 20200006013
    Abstract: A supercapacitor apparatus within a sealed housing to provide a high-voltage EDLC energy storage unit includes cells stacked on one another, with each cell having a set of supercapacitors that are interconnected within the apparatus in a parallel-series configuration to provide an internally balanced energy storage unit that is capable of stand-off voltages of 10 volts or higher. The energy storage unit does not require balancing resistors or more complicated external balancing circuitry. The electrodes of the supercapacitors are comprised of carbon nanotubes and graphene nanoplatelets for optimal capacitance density. Along with providing higher stand-off voltages without the need for external balancing circuitry and increased volumetric energy density, the inventive energy storage unit provides for storage costs far lower than provided by currently available supercapacitor devices.
    Type: Application
    Filed: February 20, 2018
    Publication date: January 2, 2020
    Inventors: Vladimir Samuilov, Vyacheslav Solovyov, Zemfira Abutalibova
  • Patent number: 10247689
    Abstract: An electrochemical sensor for sensing a gaseous analyte includes a substrate having at least two electrodes disposed thereon, and a carbon nanotube-polyaniline (CNT/PANI) film disposed on the substrate and in contact with at least two electrodes. The CNT/PANI film includes carbon nanotubes coated with a thin layer of polyaniline. The thickness of the polyaniline coating is such that electron transport can occur along and/or between the carbon nanotubes.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: April 2, 2019
    Assignee: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK
    Inventor: Vladimir Samuilov
  • Publication number: 20190025137
    Abstract: A system, a method of use, and a Carbon Nanotube (CNT) condensation sensor for determining a dew point and/or ice point is provided. For example, a sensing system may include a thermal device configured to generate heating or cooling to change a temperature of a surface, a temperature sensor for measuring the temperature of the surface, a controller configured to control the thermal device, a carbon nanotube (CNT) condensation sensor mounted on the surface having a moisture sensitive resistance and a processor configured to determine one or more parameters based on the moisture sensitive resistance of the CNT condensation sensor and the temperature measured by the temperature sensor. The one or more parameter can be used to determine the dew point and/or ice point. A method for forming a carbon nanotube (CNT) condensation sensor is also provided.
    Type: Application
    Filed: September 19, 2018
    Publication date: January 24, 2019
    Applicants: The Research Foundation for The State University of New York, Cosa Xentaur
    Inventors: Vladimir Samuilov, John Lewis Ayres
  • Patent number: 10101219
    Abstract: A system, a method of use, and a Carbon Nanotube (CNT) condensation sensor for determining a dew point and/or ice point is provided. For example, a sensing system may include a thermal device configured to generate heating or cooling to change a temperature of a surface, a temperature sensor for measuring the temperature of the surface, a controller configured to control the thermal device, a carbon nanotube (CNT) condensation sensor mounted on the surface having a moisture sensitive resistance and a processor configured to determine one or more parameters based on the moisture sensitive resistance of the CNT condensation sensor and the temperature measured by the temperature sensor. The one or more parameter can be used to determine the dew point and/or ice point. A method for forming a carbon nanotube (CNT) condensation sensor is also provided.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: October 16, 2018
    Assignees: The Research Foundation for The State University of New York, Cosa Xentaur
    Inventors: Vladimir Samuilov, John Lewis Ayres
  • Publication number: 20170082565
    Abstract: An electrochemical sensor for sensing a gaseous analyte includes a substrate having at least two electrodes disposed thereon, and a carbon nanotube-polyaniline (CNT/PANI) film disposed on the substrate and in contact with at least two electrodes. The CNT/PANI film includes carbon nanotubes coated with a thin layer of polyaniline. The thickness of the polyaniline coating is such that electron transport can occur along and/or between the carbon nanotubes.
    Type: Application
    Filed: December 7, 2016
    Publication date: March 23, 2017
    Applicant: The Research Foundation for The State University of New York
    Inventor: Vladimir Samuilov
  • Patent number: 9541517
    Abstract: An electrochemical sensor for sensing a gaseous analyte includes a substrate having at least two electrodes disposed thereon, and a carbon nanotube-polyaniline (CNT/PANI) film disposed on the substrate and in contact with at least two electrodes. The CNT/PANI film includes carbon nanotubes coated with a thin layer of polyaniline. The thickness of the polyaniline coating is such that electron transport can occur along and/or between the carbon nanotubes.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: January 10, 2017
    Assignee: The Research Foundation for The State University of New York
    Inventor: Vladimir Samuilov
  • Publication number: 20150233856
    Abstract: A system, a method of use, and a Carbon Nanotube (CNT) condensation sensor for determining a dew point and/or ice point is provided. For example, a sensing system may include a thermal device configured to generate heating or cooling to change a temperature of a surface, a temperature sensor for measuring the temperature of the surface, a controller configured to control the thermal device, a carbon nanotube (CNT) condensation sensor mounted on the surface having a moisture sensitive resistance and a processor configured to determine one or more parameters based on the moisture sensitive resistance of the CNT condensation sensor and the temperature measured by the temperature sensor. The one or more parameter can be used to determine the dew point and/or ice point. A method for forming a carbon nanotube (CNT) condensation sensor is also provided.
    Type: Application
    Filed: February 26, 2015
    Publication date: August 20, 2015
    Inventors: Vladimir Samuilov, John Lewis Ayres
  • Patent number: 9086363
    Abstract: Disclosed is a dewpoint and icing condition detection apparatus that includes a sensor, a signal conditioner and a data acquisition device. The sensor is a carbon nanotube sensor having a resistance that varies in proportion to a change in humidity of a gas flow across the sensor.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: July 21, 2015
    Assignee: THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YORK.
    Inventor: Vladimir Samuilov
  • Publication number: 20140021067
    Abstract: An electrochemical sensor for sensing a gaseous analyte includes a substrate having at least two electrodes disposed thereon, and a carbon nanotube-polyaniline (CNT/PANI) film disposed on the substrate and in contact with at least two electrodes. The CNT/PANI film includes carbon nanotubes coated with a thin layer of polyaniline. The thickness of the polyaniline coating is such that electron transport can occur along and/or between the carbon nanotubes.
    Type: Application
    Filed: September 19, 2013
    Publication date: January 23, 2014
    Applicant: The Research Foundation for The State University of New York
    Inventor: Vladimir Samuilov
  • Publication number: 20110167894
    Abstract: Disclosed is a devvpoinl and icing condition detection apparatus that includes a sensor, a signal conditioner and a data acquisition device. The sensor is a carbon nanotube sensor having a resistance that varies in proportion to a change in humidity of a gas flow across the sensor.
    Type: Application
    Filed: September 8, 2009
    Publication date: July 14, 2011
    Inventor: Vladimir Samuilov
  • Patent number: 5285083
    Abstract: A heterojunction bipolar transistor having base, emitter and undoped amorphous silicon collector regions formed on a crystalline silicon substrate. A p-n junction is formed in the substrate, beneath the collector region. A single such transistor may be configured as a static memory device which may be reversibly switched between stable first and second states by applying a voltage of about 8 to 10 volts to the collector and by selectively applying positive or negative pulses of about .+-.0.75 volts to the base.
    Type: Grant
    Filed: April 27, 1992
    Date of Patent: February 8, 1994
    Assignee: The University of British Columbia
    Inventors: David L. Pulfrey, David D. Shulman, Vladimir Samuilov, Elena Bondarionok, Vasilii Krasnitski, Nickolai Poklonski, Viatcheslav Stelmakh