Patents by Inventor Vladimir Shkunov

Vladimir Shkunov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150110452
    Abstract: High aspect ratio core optical fiber designs, which could be semi-guiding, including a core region having a first refractive index and a high aspect ratio elongated cross-section along a slow axis direction, are described. An internal cladding having a second refractive index sandwiches the core and acts as a fast-axis signal cladding. The core has an edge region at both of its short edges that is in contract with edge-cladding regions having a barbell shape. The refractive index of the core regions, the refractive index of the internal claddings, and the refractive index of the edge-cladding regions, are selected so as to maximize the optical power of a lowest-order mode propagating in the fiber core, and to minimize the optical power of the next-order modes in the fiber core. A process to fabricate such a high aspect ratio core fiber is also provided.
    Type: Application
    Filed: May 13, 2013
    Publication date: April 23, 2015
    Inventors: David J. Digiovanni, Dennis J. Trevor, David A. Rockwell, Vladimir Shkunov
  • Publication number: 20070086492
    Abstract: A high extraction efficiency laser system. The novel laser system includes a master oscillator for providing a laser beam, an amplifier adapted to amplify the laser beam, and an aberrator for aberrating the laser beam to prevent the formation of caustic intensity patterns within the amplifier. In an illustrative embodiment, the laser system also includes a depolarizer disposed between the master oscillator and the amplifier to reduce the contrast of speckle intensity patterns in the amplifier, and a mechanism adapted to rotate or otherwise move the aberrator to time-vary the aberrations in the beam in order to increase the spatial homogenization of saturation and extraction patterns in the amplifier. In a preferred embodiment, the coherence length of the beam is also shortened to reduce interference fringes in the amplifier.
    Type: Application
    Filed: October 19, 2005
    Publication date: April 19, 2007
    Inventors: Alexander Betin, Vladimir Shkunov