Patents by Inventor Vladimir Sulc

Vladimir Sulc has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11943167
    Abstract: A wireless mesh network includes a controller in wireless communication with a plurality of slave devices where each slave device is assigned a virtual routing number that defines a time slot in a TDMA communications frame. The slave devices are configured to receive, out of band and/or separately from the TDMA communications frame, asynchronous transmissions of sensor data from battery operated sensor devices. The battery operated sensor devices transmit asynchronously and do not participate in the TDMA communications frame in order to save battery power. The slave devices store data received from the sensor devices until the data is requested by the controller through an initiation message. In response, the slave devices aggregate data received directly from asynchronous communications with data received from other slave devices during an accumulation process that passes the accumulated date back to the controller through the mesh network during a TDMA acknowledgement frame.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: March 26, 2024
    Inventor: Vladimir Sulc
  • Patent number: 11351842
    Abstract: A transport refrigeration system (TRS) includes a first heat transfer circuit including a first compressor, a condenser, a first expansion device, and a cascade heat exchanger. The first compressor, the condenser, the first expansion device, and the cascade heat exchanger are in fluid communication such that a first heat transfer fluid can flow therethrough. The TRS includes a second heat transfer circuit including a second compressor, the cascade heat exchanger, a second expansion device, and an evaporator. The second compressor, the cascade heat exchanger, the second expansion device, and the evaporator are in fluid communication such that a second heat transfer fluid can flow therethrough. The first heat transfer circuit and the second heat transfer circuit are arranged in thermal communication at the cascade heat exchanger such that the first heat transfer fluid and the second heat transfer fluid are in a heat exchange relationship at the cascade heat exchanger.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: June 7, 2022
    Assignee: Thermo King Corporation
    Inventors: Stephen A. Kujak, Kenneth J. Schultz, Jeffrey B. Berge, Panayu Robert Srichai, Vladimir Sulc, Michal Kolda, John R. Sauls
  • Publication number: 20220077992
    Abstract: A wireless mesh network includes a controller in wireless communication with a plurality of slave devices where each slave device is assigned a virtual routing number that defines a time slot in a TDMA communications frame. The slave devices are configured to receive, out of band and/or separately from the TDMA communications frame, asynchronous transmissions of sensor data from battery operated sensor devices. The battery operated sensor devices transmit asynchronously and do not participate in the TDMA communications frame in order to save battery power. The slave devices store data received from the sensor devices until the data is requested by the controller through an initiation message. In response, the slave devices aggregate data received directly from asynchronous communications with data received from other slave devices during an accumulation process that passes the accumulated date back to the controller through the mesh network during a TDMA acknowledgement frame.
    Type: Application
    Filed: September 7, 2021
    Publication date: March 10, 2022
    Inventor: Vladimir Sulc
  • Publication number: 20200148038
    Abstract: A transport refrigeration system (TRS) includes a first heat transfer circuit including a first compressor, a condenser, a first expansion device, and a cascade heat exchanger. The first compressor, the condenser, the first expansion device, and the cascade heat exchanger are in fluid communication such that a first heat transfer fluid can flow therethrough. The TRS includes a second heat transfer circuit including a second compressor, the cascade heat exchanger, a second expansion device, and an evaporator. The second compressor, the cascade heat exchanger, the second expansion device, and the evaporator are in fluid communication such that a second heat transfer fluid can flow therethrough. The first heat transfer circuit and the second heat transfer circuit are arranged in thermal communication at the cascade heat exchanger such that the first heat transfer fluid and the second heat transfer fluid are in a heat exchange relationship at the cascade heat exchanger.
    Type: Application
    Filed: January 15, 2020
    Publication date: May 14, 2020
    Inventors: Stephen A. KUJAK, Kenneth J. SCHULTZ, Jeffrey B. BERGE, Panayu Robert SRICHAI, Vladimir SULC, Michal KOLDA, John R. SAULS
  • Patent number: 10571165
    Abstract: A transport refrigeration system (TRS) and method of operating a TRS having a sorption subsystem are disclosed. The TRS includes a refrigeration subsystem and a sorption subsystem. The refrigeration subsystem includes a refrigerant, a compressor, a refrigerant condenser, a refrigerant expansion device, and a refrigerant evaporator in fluid communication such that the refrigerant can flow therethrough. The sorption subsystem includes a heat transfer fluid, a heat source, a boiler, a sorption condenser, a sorption expansion valve, a sorption evaporator, and a pump in fluid communication such that the heat transfer fluid can flow therethrough. The sorption evaporator is in thermal communication with the refrigeration subsystem.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: February 25, 2020
    Assignee: Thermo King Corporation
    Inventors: Panayu Robert Srichai, Robert Michael Lattin, Vladimir Sulc, Jeffrey B. Berge, Clay A. Rohrer, Don Shapiro
  • Patent number: 10543737
    Abstract: A transport refrigeration system (TRS) includes a first heat transfer circuit including a first compressor, a condenser, a first expansion device, and a cascade heat exchanger. The first compressor, the condenser, the first expansion device, and the cascade heat exchanger are in fluid communication such that a first heat transfer fluid can flow therethrough. The TRS includes a second heat transfer circuit including a second compressor, the cascade heat exchanger, a second expansion device, and an evaporator. The second compressor, the cascade heat exchanger, the second expansion device, and the evaporator are in fluid communication such that a second heat transfer fluid can flow therethrough. The first heat transfer circuit and the second heat transfer circuit are arranged in thermal communication at the cascade heat exchanger such that the first heat transfer fluid and the second heat transfer fluid are in a heat exchange relationship at the cascade heat exchanger.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: January 28, 2020
    Assignee: Thermo King Corporation
    Inventors: Stephen A. Kujak, Kenneth J. Schultz, Jeffrey B. Berge, Panayu Robert Srichai, Vladimir Sulc, Michal Kolda, John R. Sauls
  • Patent number: 10436495
    Abstract: A transport refrigeration unit (TRU) includes a compressor. The TRU further includes a condenser disposed downstream of the compressor. The TRU further includes an expansion device disposed downstream of the condenser. The TRU further includes a first flow control device disposed downstream of the condenser. The TRU further includes a first evaporator disposed downstream of the expansion device and the first flow control device. The first evaporator is disposed upstream of a second flow control device. The second evaporator is disposed downstream of the first flow control device, the expansion device, and the second flow control device. The second evaporator includes a thermal accumulator. The second flow control device disposed upstream of the compressor.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: October 8, 2019
    Assignee: Thermo King Corporation
    Inventors: Panayu Robert Srichai, Vladimir Sulc, Gary O. McGinley, Eric Kirby, Christopher L Ganshert, Christopher J. Kroeker, Casey Briscoe
  • Patent number: 10079664
    Abstract: A slave communication device includes a memory and a processor for operation within a wireless mesh network of communication devices including a control communication device. The memory stores a virtual routing identifier assigned to the slave communication device in response to increasing range from the control communication device. The processor, in response to receiving an initiation message from a control communication device, initiates data collection from said slave communication device synchronized relative to the start of the initiation message frame by, cumulatively setting bits in a first acknowledgement message in response to content of a second acknowledgement message received from another slave communication device. The first acknowledgement message being synchronized with start of the initiation message frame and the processor initiates communication of the first acknowledgement message to a destination in a time slot selected in response to the assigned virtual routing identifier.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: September 18, 2018
    Inventor: Vladimir Sulc
  • Publication number: 20180149393
    Abstract: A transport refrigeration system (TRS) and method of operating a TRS having a sorption subsystem are disclosed. The TRS includes a refrigeration subsystem and a sorption subsystem. The refrigeration subsystem includes a refrigerant, a compressor, a refrigerant condenser, a refrigerant expansion device, and a refrigerant evaporator in fluid communication such that the refrigerant can flow therethrough. The sorption subsystem includes a heat transfer fluid, a heat source, a boiler, a sorption condenser, a sorption expansion valve, a sorption evaporator, and a pump in fluid communication such that the heat transfer fluid can flow therethrough. The sorption evaporator is in thermal communication with the refrigeration subsystem.
    Type: Application
    Filed: May 26, 2016
    Publication date: May 31, 2018
    Inventors: Panayu Robert SRICHAI, Robert Michael LATTIN, Vladimir SULC, Jeffrey B. BERGE, Clay A. ROHRER, Don SHAPIRO
  • Patent number: 9743404
    Abstract: A general wireless mesh network of communication devices with packet message transmission, especially for telemetry and automation, includes at least a single control communication device and a set of slave communication devices. The control communication device searches in the network and assigns a virtual routing number to each slave communication device. The virtual routing number reflects a distance of the slave communication device from the control communication device, expressed by the number of routings, and is stored in the slave communication device. The slave communication device, for further routing of packets in the mesh network, uses time slots assigned according to the difference between said virtual routing number and the virtual routing number of the sender of a received packet. Packet routing is based on successive flooding of the virtual routing structure and time division multiplexing.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: August 22, 2017
    Assignee: MICRORISC s.r.o.
    Inventor: Vladimir Sulc
  • Publication number: 20170207896
    Abstract: A slave communication device includes a memory and a processor for operation within a wireless mesh network of communication devices including a control communication device. The memory stores a virtual routing identifier assigned to the slave communication device in response to increasing range from the control communication device. The processor, in response to receiving an initiation message from a control communication device, initiates data collection from said slave communication device synchronised relative to the start of the initiation message frame by, cumulatively setting bits in a first acknowledgement message in response to content of a second acknowledgement message received from another slave communication device. The first acknowledgement message being synchronized with start of the initiation message frame and the processor initiates communication of the first acknowledgement message to a destination in a time slot selected in response to the assigned virtual routing identifier.
    Type: Application
    Filed: April 3, 2017
    Publication date: July 20, 2017
    Inventor: Vladimir Sulc
  • Publication number: 20170182869
    Abstract: A transport refrigeration system (TRS) includes a first heat transfer circuit including a first compressor, a condenser, a first expansion device, and a cascade heat exchanger. The first compressor, the condenser, the first expansion device, and the cascade heat exchanger are in fluid communication such that a first heat transfer fluid can flow therethrough. The TRS includes a second heat transfer circuit including a second compressor, the cascade heat exchanger, a second expansion device, and an evaporator. The second compressor, the cascade heat exchanger, the second expansion device, and the evaporator are in fluid communication such that a second heat transfer fluid can flow therethrough. The first heat transfer circuit and the second heat transfer circuit are arranged in thermal communication at the cascade heat exchanger such that the first heat transfer fluid and the second heat transfer fluid are in a heat exchange relationship at the cascade heat exchanger.
    Type: Application
    Filed: December 28, 2016
    Publication date: June 29, 2017
    Inventors: Stephen A. KUJAK, Kenneth J. SCHULTZ, Jeffrey B. BERGE, Panayu Robert SRICHAI, Vladimir SULC, Michal KOLDA, John R. SAULS
  • Patent number: 9615308
    Abstract: A slave communication device includes a memory and a processor for operation within a wireless mesh network of communication devices including a control communication device. The memory stores a virtual routing identifier assigned to the slave communication device in response to increasing range from the control communication device. The processor, in response to receiving an initiation message from a control communication device, initiates data collection from said slave communication device synchronized relative to the start of the initiation message frame by, cumulatively setting bits in a first acknowledgement message in response to content of a second acknowledgement message received from another slave communication device. The first acknowledgement message being synchronized with start of the initiation message frame and the processor initiates communication of the first acknowledgement message to a destination in a time slot selected in response to the assigned virtual routing identifier.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: April 4, 2017
    Assignee: MICRORISC s.r.o.
    Inventor: Vladimir Sulc
  • Publication number: 20160334154
    Abstract: A transport refrigeration unit (TRU) includes a compressor. The TRU further includes a condenser disposed downstream of the compressor. The TRU further includes an expansion device disposed downstream of the condenser. The TRU further includes a first flow control device disposed downstream of the condenser. The TRU further includes a first evaporator disposed downstream of the expansion device and the first flow control device. The first evaporator is disposed upstream of a second flow control device. The second evaporator is disposed downstream of the first How control device., the expansion device, and the second flow control device. The second evaporator includes a thermal accumulator. The second flow control device disposed upstream of the compressor.
    Type: Application
    Filed: April 28, 2016
    Publication date: November 17, 2016
    Inventors: Panayu Robert Srichai, Vladimir Sulc, Gary O. McGinley, Eric Kirby, Christopher L. Ganshert, Christopher J. Kroeker, Casey Briscoe
  • Publication number: 20160209093
    Abstract: Systems and methods are described herein to use a discharge pressure of a compressor to drive refrigerant in a refrigeration system. Particularly, systems and methods are described herein to help recover liquid refrigerant from a liquid refrigerant section and/or a condenser coil to be used in a heating/defrost mode in a transport refrigerant unit (TRU). The liquid refrigerant can be recovered by directing the discharge refrigerant of the compressor to a liquid refrigerant section, which may include a receiver tank, a dryer and associated refrigerant lines, and/or a condenser coil. The discharge pressure of the discharge port can help drive refrigerant trapped in the liquid refrigerant section and/or the condenser coil into the heating/defrost branch of the TRU, which may include an evaporator coil, an accumulator tank and/or associated refrigerant lines.
    Type: Application
    Filed: August 29, 2014
    Publication date: July 21, 2016
    Inventors: VladimĂ­r SULC, Pavel IKRATH, Panayu Robert SRICHAI, Srinivasa Rao KOPPINEEDI, Malcom MILES
  • Publication number: 20160128063
    Abstract: A general wireless mesh network of communication devices with packet message transmission, especially for telemetry and automation, includes at least a single control communication device and a set of slave communication devices. The control communication device searches in the network and assigns a virtual routing number to each slave communication device. The virtual routing number reflects a distance of the slave communication device from the control communication device, expressed by the number of routings, and is stored in the slave communication device. The slave communication device, for further routing of packets in the mesh network, uses time slots assigned according to the difference between said virtual routing number and the virtual routing number of the sender of a received packet. Packet routing is based on successive flooding of the virtual routing structure and time division multiplexing.
    Type: Application
    Filed: November 3, 2015
    Publication date: May 5, 2016
    Inventor: Vladimir Sulc
  • Publication number: 20150328953
    Abstract: Systems and methods are directed to controlling the amount of power supplied by an engine for a transport refrigeration system (TRS). An engine load is estimated and compared with a maximum allowable power supply from an engine. The engine load can be automatically adjusted according to results of the comparison. An automatic adjustment of the amount of power supplied by the engine is provided, to ensure that the engine is operating within a preset window of operation and compliant with emission legislation.
    Type: Application
    Filed: December 27, 2013
    Publication date: November 19, 2015
    Inventors: Vladimir SULC, Robert Michael LATTIN, Alan D. GUSTAFSON, Ryan J. DOTZENROD, Gary O. McGINLEY
  • Patent number: 9179498
    Abstract: A general wireless mesh network of communication devices with packet message transmission, especially for telemetry and automation, includes at least a single control communication device and a set of slave communication devices. The control communication device searches in the network and assigns a virtual routing number to each slave communication device. The virtual routing number reflects a distance of the slave communication device from the control communication device, expressed by the number of routings, and is stored in the slave communication device. The slave communication device, for further routing of packets in the mesh network, uses time slots assigned according to the difference between said virtual routing number and the virtual routing number of the sender of a received packet. Packet routing is based on successive flooding of the virtual routing structure and time division multiplexing.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: November 3, 2015
    Assignee: MICRORISC s.r.o.
    Inventor: Vladimir Sulc
  • Publication number: 20150055498
    Abstract: A slave communication device includes a memory and a processor for operation within a wireless mesh network of communication devices including a control communication device. The memory stores a virtual routing identifier assigned to the slave communication device in response to increasing range from the control communication device. The processor, in response to receiving an initiation message from a control communication device, initiates data collection from said slave communication device synchronised relative to the start of the initiation message frame by, cumulatively setting bits in a first acknowledgement message in response to content of a second acknowledgement message received from another slave communication device. The first acknowledgement message being synchronized with start of the initiation message frame and the processor initiates communication of the first acknowledgement message to a destination in a time slot selected in response to the assigned virtual routing identifier.
    Type: Application
    Filed: August 19, 2014
    Publication date: February 26, 2015
    Applicant: MICRORISC s.r.o.
    Inventor: Vladimir Sulc
  • Publication number: 20140160986
    Abstract: A general wireless mesh network of communication devices with packet message transmission, especially for telemetry and automation, includes at least a single control communication device and a set of slave communication devices. The control communication device searches in the network and assigns a virtual routing number to each slave communication device. The virtual routing number reflects a distance of the slave communication device from the control communication device, expressed by the number of routings, and is stored in the slave communication device. The slave communication device, for further routing of packets in the mesh network, uses time slots assigned according to the difference between said virtual routing number and the virtual routing number of the sender of a received packet. Packet routing is based on successive flooding of the virtual routing structure and time division multiplexing.
    Type: Application
    Filed: January 30, 2014
    Publication date: June 12, 2014
    Inventor: Vladimir Sulc