Patents by Inventor Vladimir Tsukernik

Vladimir Tsukernik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7876094
    Abstract: Described are methods for monitoring of stresses and other material properties. These methods use measurements of effective electrical properties, such as magnetic permeability and electrical conductivity, to infer the state of the test material, such as the stress, temperature, or overload condition. The sensors, which can be single element sensors or sensor arrays, can be used to periodically inspect selected locations, mounted to the test material, or scanned over the test material to generate two-dimensional images of the material properties. Magnetic field or eddy current based inductive and giant magnetoresistive sensors may be used on magnetizable and/or conducting materials, while capacitive sensors can be used for dielectric materials. Methods are also described for the use of state-sensitive layers to determine the state of materials of interest. These methods allow the weight of articles, such as aircraft, to be determined.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: January 25, 2011
    Assignee: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Ian C. Shay, Darrell E. Schlicker, Andrew P. Washabaugh, David C. Grundy, Robert J. Lyons, Vladimir A. Zilberstein, Vladimir Tsukernik
  • Patent number: 7696748
    Abstract: Methods and apparatus are described for absolute electrical property measurement of materials. This is accomplished with magnetic and electric field based sensors and sensor array geometries that can be modeled accurately and with impedance instrumentation that permits accurate measurements of the in-phase and quadrature phase signal components. A dithering calibration method is also described which allows the measurement to account for background material noise variations. Methods are also described for accounting for noise factors in sensor design and selection of the optimal operating conditions which can minimize the error bounds for material property estimates. Example application of these methods to automated engine disk slot inspection and assessment of the mechanical condition of dielectric materials are presented.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: April 13, 2010
    Assignee: Jentek Sensors, Inc.
    Inventors: Darrell E. Schlicker, Neil J. Goldfine, David C. Grundy, Robert J. Lyons, Vladimir A. Zilberstein, Andrew P. Washabaugh, Vladimir Tsukernik, Mark D. Windoloski, Ian C. Shay
  • Publication number: 20100045277
    Abstract: Described are methods for monitoring of stresses and other material properties. These methods use measurements of effective electrical properties, such as magnetic permeability and electrical conductivity, to infer the state of the test material, such as the stress, temperature, or overload condition. The sensors, which can be single element sensors or sensor arrays, can be used to periodically inspect selected locations, mounted to the test material, or scanned over the test material to generate two-dimensional images of the material properties. Magnetic field or eddy current based inductive and giant magnetoresistive sensors may be used on magnetizable and/or conducting materials, while capacitive sensors can be used for dielectric materials. Methods are also described for the use of state-sensitive layers to determine the state of materials of interest. These methods allow the weight of articles, such as aircraft, to be determined.
    Type: Application
    Filed: April 4, 2008
    Publication date: February 25, 2010
    Inventors: Neil J. Goldfine, Ian C. Shay, Darrell E. Schlicker, Andrew P. Washabaugh, David C. Grundy, Robert J. Lyons, Vladimir A. Zilberstein, Vladimir Tsukernik
  • Patent number: 7526964
    Abstract: Methods are described for the use of conformable eddy-current sensors and sensor arrays for characterizing residual stresses and applied loads in materials. In addition, for magnetizable materials such as steels, these methods can be used to determine carbide content and to inspect for grinding burn damage. The sensor arrays can be mounted inside or scanned across the inner surface of test articles and hollow fasteners to monitor stress distributions. A technique for placing eddy-current coils around magnetizable fasteners for load distribution monitoring is also disclosed.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: May 5, 2009
    Assignee: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Vladimir A. Zilberstein, James M. Fisher, David C. Grundy, Darrell E. Schlicker, Vladimir Tsukernik, Robert J. Lyons, Ian C. Shay, Andrew P. Washabaugh
  • Patent number: 7518360
    Abstract: Combined wound and micro-fabricated winding constructs are described for the inspection of materials and the detection and characterization of hidden features or flaws. These constructs can be configured as sensors or sensor arrays that are surface mounted or scanned over conducting and/or magnetizable test materials. The well-defined geometry obtained micro-fabricated windings and from carefully wound coils with known winding positions permits the use of model based inversions of sensed responses into material properties. In a preferred embodiment, the primary winding is a wound coil and the sense elements are etched or printed. The drive or sense windings can also be mounted under fasteners to improve sensitivity to hidden flaws. Ferrites and other means may be used to guide the magnetic flux and enhance the magnetic field in the test material.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: April 14, 2009
    Assignee: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Darrell E. Schlicker, Andrew P. Washabaugh, Ian C. Shav, Mark D. Windoloski, Christopher Root, Vladimir A. Zilberstein, David C. Grundy, Vladimir Tsukernik
  • Publication number: 20080258720
    Abstract: Combined wound and micro-fabricated winding constructs are described for the inspection of materials and the detection and characterization of hidden features or flaws. These constructs can be configured as sensors or sensor arrays that are surface mounted or scanned over conducting and/or magnetizable test materials. The well-defined geometry obtained micro-fabricated windings and from carefully wound coils with known winding positions permits the use of model based inversions of sensed responses into material properties. In a preferred embodiment, the primary winding is a wound coil and the sense elements are etched or printed. The drive or sense windings can also be mounted under fasteners to improve sensitivity to hidden flaws. Ferrites and other means may be used to guide the magnetic flux and enhance the magnetic field in the test material.
    Type: Application
    Filed: June 1, 2007
    Publication date: October 23, 2008
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Darrell E. Schlicker, Andrew P. Washabaugh, Ian C. Shav, Mark D. Windoloski, Christopher Root, Vladimir A. Zilberstein, David C. Grundy, Vladimir Tsukernik
  • Publication number: 20070272042
    Abstract: A set of curved components, such as the dovetail region of engine blades, are inspected by mounting each component into a circular carousel in a vertical orientation and rotating the carousel to move each component toward and away from an inspection site. The inspection site clamps a flexible eddy current sensor array to the curved material surface, scans the array over the surface, records the sensor position. A rigid element having a surface geometry similar to the surface shape of the component can be attached to the component to facilitate scanning of the sensor array over a component edge. The response of each sense element in the array may be converted into an effective material property and sense element proximity to the component material surface to verify the quality of the inspection scan and the presence of a defect such as a crack.
    Type: Application
    Filed: March 7, 2007
    Publication date: November 29, 2007
    Inventors: Neil Goldfine, Mark Windoloski, Vladimir Tsukernik, Darrell Schlicker, Todd Dunford, Andrew Washabaugh
  • Publication number: 20070120561
    Abstract: Material condition monitoring may be performed by electromagnetic sensors and sensor arrays mounted to the material surface. The sensors typically have a periodic winding or electrode structure that creates a periodic sensing field when driven by an electrical signal. The sensors can be thin and flexible so that they conform to the surface of the test material. They can also be mounted such that they do not significantly modify the environmental exposure conditions for the test material, such as by creating stand-off gaps between the sensor and material surface or by perforating the sensor substrate.
    Type: Application
    Filed: September 18, 2006
    Publication date: May 31, 2007
    Inventors: Neil Goldfine, Darrell Schlicker, Karen Walrath, Andrew Washabaugh, Vladimir Zilberstein, Vladimir Tsukernik
  • Publication number: 20070114993
    Abstract: Described are methods for monitoring of stresses and other material properties. These methods use measurements of effective electrical properties, such as magnetic permeability and electrical conductivity, to infer the state of the test material, such as the stress, temperature, or overload condition. The sensors, which can be single element sensors or sensor arrays, can be used to periodically inspect selected locations, mounted to the test material, or scanned over the test material to generate two-dimensional images of the material properties. Magnetic field or eddy current based inductive and giant magnetoresistive sensors may be used on magnetizable and/or conducting materials, while capacitive sensors can be used for dielectric materials. Methods are also described for the use of state-sensitive layers to determine the state of materials of interest. These methods allow the weight of articles, such as aircraft, to be determined.
    Type: Application
    Filed: November 30, 2005
    Publication date: May 24, 2007
    Inventors: Neil Goldfine, Ian Shay, Darrell Schlicker, Andrew Washabaugh, David Grundy, Robert Lyons, Vladimir Zilberstein, Vladimir Tsukernik
  • Patent number: 7183764
    Abstract: Described are methods for pressurizing elastic support structures or balloons in sensor probes used for the inspection of components having areas of limited access. When inflated, the balloons press flexible sensors against the surface of the material under test. When deflated, the balloons permit easier insertion of the probes into the component and reduce the mechanical stresses on the sensors, thereby extending the sensor lifetime. By sequentially partially inserting the sensor into a limited access area from either side of the limited access area and scanning in opposite directions, the entire surface of the test material can be inspected.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: February 27, 2007
    Assignee: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Darrell E. Schlicker, Vladimir Tsukernik, Ian C. Shay, David C. Grundy, Andrew P. Washabaugh
  • Patent number: 7161350
    Abstract: Material condition monitoring may be performed by electromagnetic sensors and sensor arrays mounted to the material surface. The sensors typically have a periodic winding or electrode structure that creates a periodic sensing field when driven by an electrical signal. The sensors can be thin and flexible so that they conform to the surface of the test material. They can also be mounted such that they do not significantly modify the environmental exposure conditions for the test material, such as by creating stand-off gaps between the sensor and material surface or by perforating the sensor substrate.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: January 9, 2007
    Assignee: Jentek Sensors, Inc.
    Inventors: Neil J. Goldfine, Darrell E. Schlicker, David C. Clark, Karen E. Walrath, Volker Weiss, William M. Chepolis, Andrew P. Washabaugh, Vladimir A. Zilberstein, Vladimir Tsukernik
  • Publication number: 20060244443
    Abstract: Eddy current sensors and sensor arrays are used for process quality and material condition assessment of conducting materials. In an embodiment, changes in spatially registered high resolution images taken before and after cold work processing reflect the quality of the process, such as intensity and coverage. These images also permit the suppression or removal of local outlier variations. Anisotropy in a material property, such as magnetic permeability or electrical conductivity, can be intentionally introduced and used to assess material condition resulting from an operation, such as a cold work or heat treatment. The anisotropy is determined by sensors that provide directional property measurements. The sensor directionality arises from constructs that use a linear conducting drive segment to impose the magnetic field in a test material. Maintaining the orientation of this drive segment, and associated sense elements, relative to a material edge provides enhanced sensitivity for crack detection at edges.
    Type: Application
    Filed: January 30, 2006
    Publication date: November 2, 2006
    Inventors: Neil Goldfine, Andrew Washabaugh, Yanko Sheiretov, Darrell Schlicker, Robert Lyons, Mark Windoloski, Christopher Craven, Vladimir Tsukernik, David Grundy
  • Patent number: 7033376
    Abstract: A thrombus filter configured for placement in within a blood vessel lumen defined by a blood vessel wall. Methods and devices for selectively removing the thrombus filter when the presence of a filter in the vascular system is no longer desired. The thrombus filter includes a first strand formation, a second strand formation, and a joined portion.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: April 25, 2006
    Assignee: Scimed Life Systems, Inc.
    Inventor: Vladimir Tsukernik
  • Patent number: 6952095
    Abstract: Inductive sensors measure the near surface properties of conducting and magnetic material. A sensor may have primary windings with parallel extended winding segments to impose a spatially periodic magnetic field in a test material. Those extended portions may be formed by adjacent portions of individual drive coils. Sensing elements provided every other half wavelength may be connected together in series while the sensing elements in adjacent half wavelengths are spatially offset. Certain sensors include circular segments which create a circularly symmetric magnetic field that is periodic in the radial direction. Such sensors are particularly adapted to surround fasteners to detect cracks and can be mounted beneath a fastener head. In another sensor, sensing windings are offset along the length of parallel winding segments to provide material measurements over different locations when the circuit is scanned over the test material.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: October 4, 2005
    Assignee: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Darrell E. Schlicker, Andrew P. Washabaugh, Vladimir A. Zilberstein, Vladimir Tsukernik
  • Publication number: 20050127908
    Abstract: Methods and apparatus are described for absolute electrical property measurement of materials. This is accomplished with magnetic and electric field based sensors and sensor array geometries that can be modeled accurately and with impedance instrumentation that permits accurate measurements of the in-phase and quadrature phase signal components. A dithering calibration method is also described which allows the measurement to account for background material noise variations. Methods are also described for accounting for noise factors in sensor design and selection of the optimal operating conditions which can minimize the error bounds for material property estimates. Example application of these methods to automated engine disk slot inspection and assessment of the mechanical condition of dielectric materials are presented.
    Type: Application
    Filed: October 12, 2004
    Publication date: June 16, 2005
    Applicant: JENTEK Sensors, Inc.
    Inventors: Darrell Schlicker, Neil Goldfine, David Grundy, Robert Lyons, Vladimir Zilberstein, Andrew Washabaugh, Vladimir Tsukernik, Mark Windoloski, Ian Shay
  • Publication number: 20050083050
    Abstract: Pressurized elastic support structures or balloons are used to press flexible sensors against the surface a material under test. Rigid support elements can also be incorporated into the inspection devices to maintain the basic shape of the inspection structure and to facilitate positioning of the sensors near the test material surface. The rigid supports can have the approximate shape of the test material surface or the pressurization of one or more balloons can be used to conform the sensor to the shape of the test material surface.
    Type: Application
    Filed: September 7, 2004
    Publication date: April 21, 2005
    Applicant: JENTEK Sensors, Inc.
    Inventors: Vladimir Tsukernik, Neil Goldfine, Andrew Washabaugh, Darrell Schlicker, Karen Walrath, Eric Hill, Vladimir Zilberstein
  • Publication number: 20050007106
    Abstract: Combined wound and micro-fabricated winding constructs are described for the inspection of materials and the detection and characterization of hidden features or flaws. These constructs can be configured as sensors or sensor arrays that are surface mounted or scanned over conducting and/or magnetizable test materials. The well-defined geometry obtained micro-fabricated windings and from carefully wound coils with known winding positions permits the use of model based inversions of sensed responses into material properties. In a preferred embodiment, the primary winding is a wound coil and the sense elements are etched or printed. The drive or sense windings can also be mounted under fasteners to improve sensitivity to hidden flaws. Ferrites and other means may be used to guide the magnetic flux and enhance the magnetic field in the test material.
    Type: Application
    Filed: May 24, 2004
    Publication date: January 13, 2005
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil Goldfine, Darrell Schlicker, Andrew Washabaugh, Ian Shay, Mark Windoloski, Christopher Root, Vladimir Zilberstein, David Grundy, Vladimir Tsukernik
  • Patent number: 6798198
    Abstract: Pressurized elastic support structures or balloons are used to press flexible sensors against the surface a material under test. Rigid support elements can also be incorporated into the inspection devices to maintain the basic shape of the inspection structure and to facilitate positioning of the sensors near the test material surface. The rigid supports can have the approximate shape of the test material surface or the pressurization of one or more balloons can be used to conform the sensor to the shape of the test material surface.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: September 28, 2004
    Assignee: JENTEK Sensors, Inc.
    Inventors: Vladimir Tsukernik, Neil J. Goldfine, Andrew P. Washabaugh, Darrell E. Schlicker, Karen E. Walrath, Eric Hill, Vladimir A. Zilberstein
  • Publication number: 20040124834
    Abstract: Described are methods for pressurizing elastic support structures or balloons in sensor probes used for the inspection of components having areas of limited access. When inflated, the balloons press flexible sensors against the surface of the material under test. When deflated, the balloons permit easier insertion of the probes into the component and reduce the mechanical stresses on the sensors, thereby extending the sensor lifetime. By sequentially partially inserting the sensor into a limited access area from either side of the limited access area and scanning in opposite directions, the entire surface of the test material can be inspected.
    Type: Application
    Filed: August 28, 2003
    Publication date: July 1, 2004
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Darrell E. Schlicker, Vladimir Tsukernik, Ian C. Shay, David C. Grundy, Andrew P. Washabaugh
  • Publication number: 20040066188
    Abstract: Inductive sensors measure the near surface properties of conducting magnetic materials. The sensors generally include parallel winding segments to induce a spatially periodic magnetic field in a material under test. The sensors may provide a directionally dependent measure with measurements made in varying orientations of the sensor with respect to the material property variation directions. The sensors may be thin, conformable sensors that can be mounted on a test material and, for example, monitor crack initiation under the sensor. A second sensor may be left in air to provide a reference measurement, or the temperature of the material under test can be varied to verify the response of the individual sensing elements. Sensors can be mounted to materials under test in order to not modify the environment that is causing the stress being monitored.
    Type: Application
    Filed: August 4, 2003
    Publication date: April 8, 2004
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Darrell E. Schlicker, Karen E. Walrath, Andrew P. Washabaugh, Vladimir A. Zilberstein, Vladimir Tsukernik