Patents by Inventor Vladimir Vladimirovich Fisenko

Vladimir Vladimirovich Fisenko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8551222
    Abstract: A method and apparatus for heating a fluid and treating a combustion products waste stream includes two or more nozzles discharging into a mixing chamber, and an outlet of the mixing chamber discharging to a gas-liquid separator. A liquid output of the gas-liquid separator may be treated to remove carbonaceous or other impurities. The nozzles may include an annular nozzle, Fisenko nozzle, and/or Laval nozzle arranged in a transonic jet module. A heated input liquid may be accelerated to sonic velocity in a main nozzle, causing boiling due to pressure drop prior to mixing with a combustion product stream in the mixing chamber. Heat may be recovered from a mixture discharged from the mixing chamber. Carbonic, sulfuric, or other combustion impurities may be captured by dissolving in water or other solvent in the transonic jet module and then recovered or otherwise used in a liquid stream from the separator.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: October 8, 2013
    Assignee: Fisonic Holding Limited
    Inventor: Vladimir Vladimirovich Fisenko
  • Patent number: 8485455
    Abstract: A supersonic nozzle (called a Fisenko nozzle) improves conversion efficiency of the pressure energy of the input medium into kinetic energy of a two-phase gas-liquid stream of the ejected medium. The nozzle for boiling liquid includes inlet and outlet sections that are respectively converging and diverging in the direction of the medium flow, between which is a minimal nozzle section. The profile for a proximal part of the diverging section of the nozzle is defined by a curve that is concave to the nozzle axis, which smoothly transitions to a curve that is convex to the nozzle axis through the critical nozzle section downstream of the nozzle minima. At the critical section, the flow reaches sonic velocity and the nozzle profile is neither convex nor concave.
    Type: Grant
    Filed: November 20, 2010
    Date of Patent: July 16, 2013
    Assignee: Fisonic Holding Limited
    Inventor: Vladimir Vladimirovich Fisenko
  • Patent number: 8453997
    Abstract: A method of conversion of a single-phase stream into a supersonic homogenous two phase medium includes flowing the stream into an inlet section of a nozzle at an initial pressure, boiling a portion of the liquid medium by accelerating a velocity of the stream through a multistage draw-down of an inner diameter of the inlet of the nozzle to form a mixture of liquid and boiled fluid; and accelerating the mixture to a second velocity by flowing the mixture through an outlet section that diverges along the flow direction. The outlet section includes a concave portion, a convex portion, and a transition between the concave portion and the convex portion in which the concave profile smoothly transitions to the convex profile. A velocity of the stream is equal to a velocity of sound in the stream at a critical section located in the outlet section.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: June 4, 2013
    Assignee: Fisonic Holding Limited
    Inventor: Vladimir Vladimirovich Fisenko
  • Patent number: 8387956
    Abstract: A reboiling jet apparatus includes at least two nozzles in series, configured to cause boiling of a hot liquid in the first nozzle, deceleration and reduction of the gas phase in the second nozzle, followed by acceleration and reboiling in the second nozzle. A second deceleration and reduction of the gas phase occurs at the outlet of the second nozzle. Each deceleration causes heating of the liquid by reduction of the gas phase; thus, energy of a pressurized input fluid is efficiently converted into heat by action of the nozzles. A convergent-divergent nozzle for steam injection with a mixing chamber may be used instead of the first nozzle to cause the first boiling. Another nozzle may be used to introduce a cold fluid at the outlet of the second nozzle for mixing with the hot flow prior to completion of the second deceleration.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: March 5, 2013
    Assignee: Fisonic Holding Limited
    Inventor: Vladimir Vladimirovich Fisenko
  • Publication number: 20120217319
    Abstract: A reboiling jet apparatus comprises at least two nozzles in series, configured to cause boiling of a hot liquid in the first nozzle, deceleration and reduction of the gas phase in the second nozzle, followed by acceleration and reboiling in the second nozzle. A second deceleration and reduction of the gas phase occurs at the outlet of the second nozzle. Each deceleration causes heating of the liquid by reduction of the gas phase; thus, energy of a pressurized input fluid is efficiently converted into heat by action of the nozzles. A convergent-divergent nozzle for steam injection with a mixing chamber may be used instead of the first nozzle to cause the first boiling. Another nozzle may be used to introduce a cold fluid at the outlet of the second nozzle for mixing with the hot flow prior to completion of the second deceleration.
    Type: Application
    Filed: December 22, 2011
    Publication date: August 30, 2012
    Inventor: Vladimir Vladimirovich Fisenko
  • Publication number: 20120168526
    Abstract: A method of conversion of a single-phase stream into a supersonic homogenous two phase medium includes flowing the stream into an inlet section of a nozzle at an initial pressure, boiling a portion of the liquid medium by accelerating a velocity of the stream through a multistage draw-down of an inner diameter of the inlet of the nozzle to form a mixture of liquid and boiled fluid; and accelerating the mixture to a second velocity by flowing the mixture through an outlet section that diverges along the flow direction. The outlet section includes a concave portion, a convex portion, and a transition between the concave portion and the convex portion in which the concave profile smoothly transitions to the convex profile. A velocity of the stream is equal to a velocity of sound in the stream at a critical section located in the outlet section.
    Type: Application
    Filed: December 23, 2011
    Publication date: July 5, 2012
    Inventor: Vladimir Vladimirovich Fisenko
  • Publication number: 20120145050
    Abstract: A method and apparatus for heating a fluid and treating a combustion products waste stream includes two or more nozzles discharging into a mixing chamber, and an outlet of the mixing chamber discharging to a gas-liquid separator. A liquid output of the gas-liquid separator may be treated to remove carbonaceous or other impurities. The nozzles may include an annular nozzle, Fisenko nozzle, and/or Laval nozzle arranged in a transonic jet module. A heated input liquid may be accelerated to sonic velocity in a main nozzle, causing boiling due to pressure drop prior to mixing with a combustion product stream in the mixing chamber. Heat may be recovered from a mixture discharged from the mixing chamber. Carbonic, sulfuric, or other combustion impurities may be captured by dissolving in water or other solvent in the transonic jet module and then recovered or otherwise used in a liquid stream from the separator.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 14, 2012
    Inventor: Vladimir Vladimirovich Fisenko
  • Publication number: 20120125954
    Abstract: A supersonic nozzle (called a Fisenko nozzle) improves conversion efficiency of the pressure energy of the input medium into kinetic energy of a two-phase gas-liquid stream of the ejected medium. The nozzle for boiling liquid includes inlet and outlet sections that are respectively converging and diverging in the direction of the medium flow, between which is a minimal nozzle section. The profile for a proximal part of the diverging section of the nozzle is defined by a curve that is concave to the nozzle axis, which smoothly transitions to a curve that is convex to the nozzle axis through the critical nozzle section downstream of the nozzle minima. At the critical section, the flow reaches sonic velocity and the nozzle profile is neither convex nor concave.
    Type: Application
    Filed: November 20, 2010
    Publication date: May 24, 2012
    Inventor: Vladimir Vladimirovich Fisenko
  • Patent number: 8104745
    Abstract: A reboiling jet apparatus comprises at least two nozzles in series, configured to cause boiling of a hot liquid in the first nozzle, deceleration and reduction of the gas phase in the second nozzle, followed by acceleration and reboiling in the second nozzle. A second deceleration and reduction of the gas phase occurs at the outlet of the second nozzle. Each deceleration causes heating of the liquid by reduction of the gas phase; thus, energy of a pressurized input fluid is efficiently converted into heat by action of the nozzles. A convergent-divergent nozzle for steam injection with a mixing chamber may be used instead of the first nozzle to cause the first boiling. Another nozzle may be used to introduce a cold fluid at the outlet of the second nozzle for mixing with the hot flow prior to completion of the second deceleration.
    Type: Grant
    Filed: November 20, 2010
    Date of Patent: January 31, 2012
    Inventor: Vladimir Vladimirovich Fisenko