Patents by Inventor Volkan AKCELIK

Volkan AKCELIK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210240889
    Abstract: A methodology for discontinuous smooth interpolation in order to generate a curve of a discontinuous volume due to one or more faults in a subsurface is disclosed. Faults in a subsurface result in discontinuities in the subsurface. Hydrocarbon management may seek to determine various surfaces in the subsurface, including across the faults in the subsurface. To generate the various surfaces, a continuous formulation of the interpolation method is followed in which discontinuous smooth interpolation is viewed as a variational optimization problem (such as an energy optimization problem) for the surface curvature function. In this way, the methodology does not require that the input data be located at grid points and discretized with a structured regular grid. Rather, because a continuous function is used, an unstructured grid may also be used to discretize the resulting equation.
    Type: Application
    Filed: January 26, 2021
    Publication date: August 5, 2021
    Inventor: Volkan Akcelik
  • Patent number: 10838093
    Abstract: A method, including: storing, in a computer memory, seismic data acquired from a seismic survey of a subsurface region; and generating, with a computer, a final subsurface physical property model of the subsurface region by processing the seismic data with an iterative full wavefield inversion method, wherein the iterative full wavefield inversion method generates the final subsurface physical property model by iteratively applying a linear solver with a preconditioner that is generated from information from one or more previous iterations of the linear solver.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: November 17, 2020
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Volkan Akcelik, Huseyin Denli
  • Patent number: 10739480
    Abstract: A computer-implemented method for updating subsurface models including: using an offset continuation approach to update the model, and at each stage defining a new objective function where a maximum offset for each stage is set, wherein the approach includes, performing a first stage iterative full wavefield inversion with near offset data, as the maximum offset, to obtain velocity and density or impedance models, performing subsequent stages of iterative full wavefield inversion, each generating updated models, relative to a previous stage, wherein the subsequent stages include incrementally expanding the maximum offset until ending at a full offset, wherein a last of the stages yields finally updated models, the subsequent stages use the updated models as starting models, and the full wavefield inversions include constraining scales of the velocity model updates at each stage of inversion as a function of velocity resolution; and using the finally updated models to prospect for hydrocarbons.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: August 11, 2020
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Volkan Akcelik, Anatoly I. Baumstein, Valeriy V. Brytik, Sunwoong Lee, Yaxun Tang
  • Patent number: 10698126
    Abstract: A computer-implemented method for updating a physical properties model of a subsurface region in an iterative inversion of seismic data using a gradient of a cost function that compares the seismic data to model-simulated data, said method comprising: obtaining a contrast model of a subsurface physical parameter that is sensitive to data dynamics and a kinematic model of a subsurface physical parameter; determining a gradient of a cost function using the contrast model and the kinematic model, wherein the cost function compares seismic data to model-simulated data; updating the kinematic model using a search direction derived from the gradient; adapting the contrast model according to an update to the kinematic model performed in the updating step; iteratively repeating the determining, updating, and adapting steps until a predetermined stopping criteria is reached, and generating a subsurface image from a finally updated kinematic model; and using the subsurface image to prospect for hydrocarbons.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: June 30, 2020
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Yaxun Tang, Sunwoong Lee, Anatoly I Baumstein, Volkan Akcelik
  • Patent number: 10416327
    Abstract: A method, including: storing, in a computer storage device, geophysical seismic data that has been separated into a multiple-free component and a multiple contaminated component; performing, with a processor, a first full wavefield inversion process on the multiple-free component of the seismic data, wherein a first subsurface physical property model is generated; determining, with a processor, an extended target reflectivity, wherein the extended target reflectivity includes a reflectivity for each of a plurality of shots; separately performing, with a processor, a second full wavefield inversion process with the multiple contaminated component of the seismic data for each of the plurality of shots using the reflectivity corresponding to each of the plurality of shots, wherein a second subsurface physical property model is generated; and generating, with a processor, multiple-free final subsurface physical property model by combining the first subsurface physical property model and the second subsurface phys
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: September 17, 2019
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Volkan Akcelik, Jerome R. Krebs
  • Publication number: 20180275300
    Abstract: A computer-implemented method for updating subsurface models including: using an offset continuation approach to update the model, and at each stage defining a new objective function where a maximum offset for each stage is set, wherein the approach includes, performing a first stage iterative full wavefield inversion with near offset data, as the maximum offset, to obtain velocity and density or impedance models, performing subsequent stages of iterative full wavefield inversion, each generating updated models, relative to a previous stage, wherein the subsequent stages include incrementally expanding the maximum offset until ending at a full offset, wherein a last of the stages yields finally updated models, the subsequent stages use the updated models as starting models, and the full wavefield inversions include constraining scales of the velocity model updates at each stage of inversion as a function of velocity resolution; and using the finally updated models to prospect for hydrocarbons.
    Type: Application
    Filed: February 12, 2018
    Publication date: September 27, 2018
    Inventors: Volkan Akcelik, Anatoly I. Baumstein, Valeriy V. Brytik, Sunwoong Lee, Yaxun Tang
  • Publication number: 20180045839
    Abstract: A computer-implemented method for updating a physical properties model of a subsurface region in an iterative inversion of seismic data using a gradient of a cost function that compares the seismic data to model-simulated data, said method comprising: obtaining a contrast model of a subsurface physical parameter that is sensitive to data dynamics and a kinematic model of a subsurface physical parameter; determining a gradient of a cost function using the contrast model and the kinematic model, wherein the cost function compares seismic data to model-simulated data; updating the kinematic model using a search direction derived from the gradient; adapting the contrast model according to an update to the kinematic model performed in the updating step; iteratively repeating the determining, updating, and adapting steps until a predetermined stopping criteria is reached, and generating a subsurface image from a finally updated kinematic model; and using the subsurface image to prospect for hydrocarbons.
    Type: Application
    Filed: June 6, 2017
    Publication date: February 15, 2018
    Inventors: Yaxun Tang, Sunwoong Lee, Anatoly I Baumstein, Volkan Akcelik
  • Publication number: 20170003409
    Abstract: A method, including: storing, in a computer memory, seismic data acquired from a seismic survey of a subsurface region; and generating, with a computer, a final subsurface physical property model of the subsurface region by processing the seismic data with an iterative full wavefield inversion method, wherein the iterative full wavefield inversion method generates the final subsurface physical property model by iteratively applying a linear solver with a preconditioner that is generated from information from one or more previous iterations of the linear solver.
    Type: Application
    Filed: June 23, 2016
    Publication date: January 5, 2017
    Inventors: Volkan Akcelik, Huseyin Denli
  • Publication number: 20160356903
    Abstract: A method, including: storing, in a computer storage device, geophysical seismic data that has been separated into a multiple-free component and a multiple contaminated component; performing, with a processor, a first full wavefield inversion process on the multiple-free component of the seismic data, wherein a first subsurface physical property model is generated; determining, with a processor, an extended target reflectivity, wherein the extended target reflectivity includes a reflectivity for each of a plurality of shots; separately performing, with a processor, a second full wavefield inversion process with the multiple contaminated component of the seismic data for each of the plurality of shots using the reflectivity corresponding to each of the plurality of shots, wherein a second subsurface physical property model is generated; and generating, with a processor, multiple-free final subsurface physical property model by combining the first subsurface physical property model and the second subsurface phys
    Type: Application
    Filed: March 16, 2016
    Publication date: December 8, 2016
    Inventors: Volkan AKCELIK, Jerome R. Krebs