Patents by Inventor Volker Hermann

Volker Hermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8952296
    Abstract: The invention relates to an interior lining for vehicles and aircraft having a carrier and a heating layer and an upper layer, wherein the at least one heating layer is arranged between the carrier and the upper layer, and the heating layer and the upper layer are directly or indirectly interconnected, and to a method for producing such an interior lining, wherein at least one heating layer is pre-laminated onto an upper layer to form a layer composite, and the layer composite is press-laminated, membrane-laminated or vacuum-laminated onto a carrier, or alternatively, in order to produce such an interior lining, a heating layer is pre-laminated onto a carrier to form a carrier/layer composite, and an upper layer is press-laminated, membrane-laminated or vacuum-laminated onto the carrier/layer composite.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: February 10, 2015
    Assignee: NBHX Trim GmbH
    Inventors: Volker Hermann, Michael Ewert
  • Publication number: 20120217232
    Abstract: The invention relates to an interior lining for vehicles and aircraft having a carrier and a heating layer and an upper layer, wherein the at least one heating layer is arranged between the carrier and the upper layer, and the heating layer and the upper layer are directly or indirectly interconnected, and to a method for producing such an interior lining, wherein at least one heating layer is pre-laminated onto an upper layer to form a layer composite, and the layer composite is press-laminated, membrane-laminated or vacuum-laminated onto a carrier, or alternatively, in order to produce such an interior lining, a heating layer is pre-laminated onto a carrier to form a carrier/layer composite, and an upper layer is press-laminated, membrane-laminated or vacuum-laminated onto the carrier/layer composite.
    Type: Application
    Filed: November 10, 2010
    Publication date: August 30, 2012
    Inventors: Volker Hermann, Michael Ewert
  • Patent number: 7947363
    Abstract: A coated article that includes a substrate and a wear-resistant coating scheme. The coated article may be a cutting insert shown to improve performance in chip-forming material removal operations or a wear-resistant component used in chipless forming operations. The wear-resistant coating scheme has an underlayer and top layer containing aluminum, chromium, and nitrogen. The coating scheme also includes a mediate multi-periodicity nanolayer coating scheme containing titanium, aluminum, chromium and nitrogen. The mediate multi-periodicity nanolayer coating scheme includes a plurality of sets of alternating layer arrangements. Each one of the alternating layer arrangements has a base layer comprising titanium, aluminum and nitrogen and a nanolayer region having a plurality of sets of alternating nanolayers. Each set of alternating nanolayers has one nanolayer having aluminum, chromium, titanium and nitrogen and another nanolayer having aluminum, chromium, titanium and nitrogen.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: May 24, 2011
    Assignees: Kennametal Inc., Oerlikon Trading Ltd.
    Inventors: Fengting Xu, Wangyang Ni, Ronald M. Penich, Yixiong Liu, Volker-Hermann Derflinger, Dennis T. Quinto, Charles E. Bauer, Qian Ding
  • Publication number: 20090155559
    Abstract: A coated article that includes a substrate and a wear-resistant coating scheme. The coated article may be a cutting insert shown to improve performance in chip-forming material removal operations or a wear-resistant component used in chipless forming operations. The wear-resistant coating scheme has an underlayer and top layer containing aluminum, chromium, and nitrogen. The coating scheme also includes a mediate multi-periodicity nanolayer coating scheme containing titanium, aluminum, chromium and nitrogen. The mediate multi-periodicity nanolayer coating scheme includes a plurality of sets of alternating layer arrangements. Each one of the alternating layer arrangements has a base layer comprising titanium, aluminum and nitrogen and a nanolayer region having a plurality of sets of alternating nanolayers. Each set of alternating nanolayers has one nanolayer having aluminum, chromium, titanium and nitrogen and another nanolayer having aluminum, chromium, titanium and nitrogen.
    Type: Application
    Filed: December 14, 2007
    Publication date: June 18, 2009
    Inventors: Fengting Xu, Wangyang Ni, Ronald M. Penich, Yixiong Liu, Volker-Hermann Derflinger, Dennis T. Quinto, Charles E. Bauer, Qian Ding
  • Patent number: 4456449
    Abstract: An apparatus for the production of calcium silicate based stone blanks including at least one mold into which a crude mixture is poured, the mixture comprising granulated silicate-containing material, lime, water, a cement and foam. The mold has a cover, a bottom and side plate, with one of the plates being movable to open and close the mold. The crude mixture is heated in the mold essentially uniformly to a temperature between 45.degree. C. and 90.degree. C. until achieving the desired blank-strength by strength-forming reactions of the cement in the crude mixture. The heater used for this purpose is a high frequency voltage heater using two parts of the mold as condensor plates connectable with a high frequency voltage source. The formed stone blanks are thereafter removed from the mold and transferred to a transport station.
    Type: Grant
    Filed: December 15, 1982
    Date of Patent: June 26, 1984
    Assignee: SICOWA Verfahrenstechnik fur Baustoffe GmbH & Co. KG
    Inventors: Peter Schubert, Hermann Pfeifer, Volker Hermann, Reimund Keller, Eckhard Schulz
  • Patent number: 4376086
    Abstract: A process and apparatus is provided for the production of calcium silicate-containing stone blanks which are useful in constructing building walls. A crude mixture, of a granulated silicate-containing material, lime, water, a cement and a foaming agent, is subjected to no more than a minimum application of external pressure and is subsequently hardened in an autoclave. The cement produces the necessary strength for the blank, so that the latter becomes transportable while the final strength is achieved by reaction of the silicate-containing material during the autoclave treatment. In order to arrive at acceptable molding times and in order to achieve a simplified process with slight fragment bulk density and optimal head damping characteristics, the crude mixture is rendered pourable, is filled into molds in a quantity corresponding to the fragment volume of the stone blank, and the crude mixture in the mold is heated essentially uniformly to a temperature between 45.degree. C. and 90.degree. C.
    Type: Grant
    Filed: April 22, 1981
    Date of Patent: March 8, 1983
    Assignee: SICOWA Verfahrenstechnik fur Baustoffe GmbH
    Inventors: Peter Schubert, Hermann Pfeifer, Volker Hermann, Reimund Keller, Eckhard Schulz
  • Patent number: RE32673
    Abstract: A process and apparatus is provided for the production of calcium silicate-containing stone blanks which are useful in constructing building walls. A crude mixture, of a granulated silicate-containing material, lime, water, a cement and a foaming agent, is subjected to no more than a minimum application of external pressure and is subsequently hardened in an autoclave. The cement produces the necessary strength for the blank, so that the latter becomes transportable while the final strength is achieved by reaction of the silicate-containing material during the autoclave treatment. In order to arrive at acceptable molding times and in order to achieve a simplified process with slight fragment bulk density and optimal head damping characteristics, the crude mixture is rendered pourable, is filled into molds in a quantity corresponding to the fragment volume of the stone blank, and the crude mixture in the mold is heated essentially uniformly to a temperature between 45.degree. C. and 90.degree. C.
    Type: Grant
    Filed: August 19, 1986
    Date of Patent: May 24, 1988
    Assignee: SICOWA Verfahrenstechnik fur Baustoffe GmbH
    Inventors: Peter Schubert, Hermann Pfeifer, Reimund Keller, Volker Hermann, Eckhard Schulz