Patents by Inventor VOLKER HOVESTADT

VOLKER HOVESTADT has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230348899
    Abstract: The present invention relates to methods of detecting region(s) of interest in a gene comprising a polyA tail. The region(s) of interest can include gene(s), region(s), mutation(s), deletion(s), insertion(s), indel(s), and/or translocation(s). The region(s) can be greater than or less than 1 kilobases from the polyA tail. Methods can include forming a library of single cell transcripts comprising the region(s) in close proximity to a cell barcode and a unique molecular identifier (UMI). Methods for distinguishing cells by genotype can include amplifying the transcripts using PCR methods and detecting the cell barcode and UMI using single cell sequencing methods. Transcripts can be enriched using tagged region-specific PCR primers. Cell barcodes can be brought into close proximity to the region(s) by circularizing the transcripts. Sequencing of the transcripts can include using primer binding sites added during PCR amplification and library indexes for multiplexed sequencing.
    Type: Application
    Filed: June 13, 2023
    Publication date: November 2, 2023
    Inventors: Peter van Galen, Volker Hovestadt, Travis Hughes, Marc H. Wadsworth II, Bradley Bernstein, Alexander K. Shalek, Todd M. Gierahn, J. Christopher Love, Ang A. Tu
  • Patent number: 11732257
    Abstract: The present invention relates to methods of detecting region(s) of interest in a gene comprising a polyA tail. The region(s) of interest can include gene(s), region(s), mutation(s), deletion(s), insertion(s), indel(s), and/or translocation(s). The region(s) can be greater than or less than 1 kilobases from the polyA tail. Methods can include forming a library of single cell transcripts comprising the region(s) in close proximity to a cell barcode and a unique molecular identifier (UMI). Methods for distinguishing cells by genotype can include amplifying the transcripts using PCR methods and detecting the cell barcode and UMI using single cell sequencing methods. Transcripts can be enriched using tagged region-specific PCR primers. Cell barcodes can be brought into close proximity to the region(s) by circularizing the transcripts. Sequencing of the transcripts can include using primer binding sites added during PCR amplification and library indexes for multiplexed sequencing.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: August 22, 2023
    Assignees: Massachusetts Institute of Technology, The General Hospital Corporation
    Inventors: Peter van Galen, Volker Hovestadt, Travis Hughes, Marc H. Wadsworth, II, Bradley Bernstein, Alexander K. Shalek, Todd M. Gierahn, J. Christopher Love, Ang A. Tu
  • Publication number: 20220282325
    Abstract: The present invention features compositions and methods for assaying DNA methylation.
    Type: Application
    Filed: May 12, 2022
    Publication date: September 8, 2022
    Applicants: The General Hospital Corporation, President and Fellows of Harvard College
    Inventors: Bradley BERNSTEIN, Sarah SHAREEF, Volker HOVESTADT
  • Publication number: 20200384022
    Abstract: The subject matter disclosed herein is generally directed to compositions and methods for treating diffuse gliomas with histone H3 lysine27-to-methionine mutations (H3K27M-gliomas). Disclosed herein are gene signatures specific for tumor cell types and compositions for treatment of H3K27M gliomas. In one embodiment, PRC1 is targeted in a treatment regimen for H3K27M-gliomas.
    Type: Application
    Filed: November 13, 2018
    Publication date: December 10, 2020
    Inventors: Mario Suva, Bradley Bernstein, Aviv Regev, Mariella Filbin, Itay Tirosh, Volker Hovestadt
  • Publication number: 20200248175
    Abstract: The present invention relates to methods of deriving genetic information from RNA-seq libraries, that can enable an overlay of genetic information (such as cancer driver mutations) onto single-cell transcriptomes and permitting efficient identification, localization, and quantification of certain cells of interest within a population as well as provide low-cost selection and sequencing of any portion of a transcript, including at the 5? end.
    Type: Application
    Filed: October 23, 2018
    Publication date: August 6, 2020
    Inventors: Peter van Galen, Volker Hovestadt, Travis Hughes, Marc H. Wadsworth II, Bradley Bernstein, Alexander K. Shalek, Todd M. Gierahn, J. Christopher Love, Ang A. Tu
  • Publication number: 20180066317
    Abstract: The present invention pertains to methods for classifying tumorous diseases based on their specific genomic DNA methylation profile. The invention provides a method that allows for a classification of a tumor sample obtained from a patient by analysing a multitude, preferably genome wide, collection of CpG positions by comparison to a classification rule derived from a set of methylation data acquired from pre-classified tumor species. The invention is in particular useful for classifying brain tumor samples since brain tumors are characterized by a large variety of distinct tumor species which have different prognostic values and require in the clinic a for each species developed treatment regime.
    Type: Application
    Filed: September 15, 2016
    Publication date: March 8, 2018
    Applicants: Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts, Ruprecht-Karls-Universität Heidelberg
    Inventors: STEFAN PFISTER, ANDREAS VON DEIMLING, DAVID JONES, DAVID CAPPER, VOLKER HOVESTADT, MARTIN SILL, MELANIE BEWERUNGE-HUDLER, MATTHIAS SCHICK