Patents by Inventor Volodymyr Komarnitskyy

Volodymyr Komarnitskyy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11018252
    Abstract: A power semiconductor transistor includes a semiconductor body having a front side and a backside with a backside surface. The semiconductor body includes a drift region of a first conductivity type and a field stop region of the first conductivity type. The field stop region is arranged between the drift region and the backside and includes, in a cross-section along a vertical direction from the backside to the front side, a concentration profile of donors of the first conductivity type that has: a first local maximum at a first distance from the backside surface, a front width at half maximum associated with the first local maximum, and a back width at half maximum associated with the first local maximum. The front width at half maximum is smaller than the back width at half maximum and amounts to at least 8% of the first distance.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: May 25, 2021
    Assignee: Infineon Technologies AG
    Inventors: Hans Peter Felsl, Moriz Jelinek, Volodymyr Komarnitskyy, Konrad Schraml, Hans-Joachim Schulze
  • Publication number: 20200098911
    Abstract: A power semiconductor transistor includes a semiconductor body having a front side and a backside with a backside surface. The semiconductor body includes a drift region of a first conductivity type and a field stop region of the first conductivity type. The field stop region is arranged between the drift region and the backside and includes, in a cross-section along a vertical direction from the backside to the front side, a concentration profile of donors of the first conductivity type that has: a first local maximum at a first distance from the backside surface, a front width at half maximum associated with the first local maximum, and a back width at half maximum associated with the first local maximum. The front width at half maximum is smaller than the back width at half maximum and amounts to at least 8% of the first distance.
    Type: Application
    Filed: September 23, 2019
    Publication date: March 26, 2020
    Inventors: Hans Peter Felsl, Moriz Jelinek, Volodymyr Komarnitskyy, Konrad Schraml, Hans-Joachim Schulze
  • Patent number: 9859378
    Abstract: A method of producing a semiconductor device includes providing a semiconductor body having a front side 10-1 and a back side, wherein the semiconductor body includes a drift region having dopants of a first conductivity type and a body region having dopants of a second conductivity type complementary to the first conductivity type, a transition between the drift region and the body region forming a pn-junction. The method further comprises: creating a contact groove in the semiconductor body, the contact groove extending into the body region along a vertical direction pointing from the front side to the back side; and filling the contact groove at least partially by epitaxially growing a semiconductor material within the contact groove, wherein the semiconductor material has dopants of the second conductivity type.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: January 2, 2018
    Assignee: Infineon Technologies AG
    Inventors: Wolfgang Wagner, Johannes Baumgartl, Volodymyr Komarnitskyy
  • Publication number: 20160365413
    Abstract: A method of producing a semiconductor device includes providing a semiconductor body having a front side 10-1 and a back side, wherein the semiconductor body includes a drift region having dopants of a first conductivity type and a body region having dopants of a second conductivity type complementary to the first conductivity type, a transition between the drift region and the body region forming a pn-junction. The method further comprises: creating a contact groove in the semiconductor body, the contact groove extending into the body region along a vertical direction pointing from the front side to the back side; and filling the contact groove at least partially by epitaxially growing a semiconductor material within the contact groove, wherein the semiconductor material has dopants of the second conductivity type.
    Type: Application
    Filed: June 15, 2016
    Publication date: December 15, 2016
    Inventors: Wolfgang Wagner, Johannes Baumgartl, Volodymyr Komarnitskyy
  • Patent number: 9362349
    Abstract: A semiconductor device includes a cell region having at least one device cell, wherein the at least one device cell includes a first device region of a first conductivity type. The semiconductor device further includes a drift region of a second conductivity type adjoining the first device region of the at least one device cell, a doped region of the first conductivity type adjoining the drift region, and charge carrier lifetime reduction means configured to reduce a charge carrier lifetime in the doped region of the first conductivity type.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: June 7, 2016
    Assignee: Infineon Technologies AG
    Inventors: Dorothea Werber, Frank Pfirsch, Hans-Joachim Schulze, Carsten Schaeffer, Volodymyr Komarnitskyy, Anton Mauder, Holger Schulze, Gerhard Miller
  • Patent number: 9240450
    Abstract: A semiconductor device includes a semiconductor body including a drift zone of a first conductivity type, an emitter region of a second, complementary conductivity type configured to inject charge carriers into the drift zone, and an emitter electrode. The emitter electrode includes a metal silicide layer in direct ohmic contact with the emitter region. A net impurity concentration in a portion of the emitter region directly adjoining the metal silicide layer is at most 1×1017 cm?3.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: January 19, 2016
    Assignee: Infineon Technologies AG
    Inventors: Dorothea Werber, Volodymyr Komarnitskyy, Thomas Gutt
  • Patent number: 9214521
    Abstract: A semiconductor device includes a first emitter region of a first conductivity type, a second emitter region of a second conductivity type complementary to the first type, a drift region of the second conductivity type, and a first electrode. The first and second emitter regions are arranged between the drift region and first electrode and each connected to the first electrode. A device cell of a cell region includes a body region of the first conductivity type adjoining the drift region, a source region of the second conductivity type adjoining the body region, and a gate electrode adjacent the body region and dielectrically insulated from the body region by a gate dielectric. A second electrode is electrically connected to the source and body regions. A parasitic region of the first conductivity type is disposed outside the cell region and includes at least one section with charge carrier lifetime reduction means.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: December 15, 2015
    Assignee: Infineon Technologies AG
    Inventors: Dorothea Werber, Frank Pfirsch, Hans-Joachim Schulze, Carsten Schaeffer, Volodymyr Komarnitskyy, Anton Mauder
  • Publication number: 20150228723
    Abstract: A semiconductor device includes a semiconductor body including a drift zone of a first conductivity type, an emitter region of a second, complementary conductivity type configured to inject charge carriers into the drift zone, and an emitter electrode. The emitter electrode includes a metal silicide layer in direct ohmic contact with the emitter region. A net impurity concentration in a portion of the emitter region directly adjoining the metal silicide layer is at most 1×1017 cm?3.
    Type: Application
    Filed: February 12, 2014
    Publication date: August 13, 2015
    Inventors: Dorothea Werber, Volodymyr Komarnitskyy, Thomas Gutt
  • Publication number: 20140015007
    Abstract: A semiconductor device includes a cell region having at least one device cell, wherein the at least one device cell includes a first device region of a first conductivity type. The semiconductor device further includes a drift region of a second conductivity type adjoining the first device region of the at least one device cell, a doped region of the first conductivity type adjoining the drift region, and charge carrier lifetime reduction means configured to reduce a charge carrier lifetime in the doped region of the first conductivity type.
    Type: Application
    Filed: June 21, 2013
    Publication date: January 16, 2014
    Inventors: Dorothea Werber, Frank Pfirsch, Hans-Joachim Schulze, Carsten Schaeffer, Volodymyr Komarnitskyy, Anton Mauder, Holger Schulze, Gerhard Miller
  • Publication number: 20130341674
    Abstract: A semiconductor device includes a first emitter region of a first conductivity type, a second emitter region of a second conductivity type complementary to the first type, a drift region of the second conductivity type, and a first electrode. The first and second emitter regions are arranged between the drift region and first electrode and each connected to the first electrode. A device cell of a cell region includes a body region of the first conductivity type adjoining the drift region, a source region of the second conductivity type adjoining the body region, and a gate electrode adjacent the body region and dielectrically insulated from the body region by a gate dielectric. A second electrode is electrically connected to the source and body regions. A parasitic region of the first conductivity type is disposed outside the cell region and includes at least one section with charge carrier lifetime reduction means.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Dorothea Werber, Frank Pfirsch, Hans-Joachim Schulze, Carsten Schaeffer, Volodymyr Komarnitskyy, Anton Mauder