Patents by Inventor Voya R. Markovich

Voya R. Markovich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9756724
    Abstract: A circuitized substrate which includes a conductive paste for providing electrical connections. The paste, in one embodiment, includes a metallic component including nano-particles and may include additional elements such as solder or other metal micro-particles, as well as a conducting polymer and organic. The particles of the paste composition sinter and, depending on what additional elements are added, melt as a result of lamination to thereby form effective contiguous circuit paths through the paste. A method of making such a substrate is also provided, as is an electrical assembly utilizing the substrate and including an electronic component such as a semiconductor chip coupled thereto.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: September 5, 2017
    Inventors: Rabindra N. Das, Kostas I. Papathomas, Voya R. Markovich
  • Patent number: 9451693
    Abstract: A multilayer capable electrically conductive adhesive (ECA) mixture for connecting multilevel Z-axis interconnects and a method of forming the ECA for connecting multilevel Z-axis interconnects. The multilayer capable ECA contains a mixture of constituent components that allow the paste to be adapted to specific requirements wherein the method of making a circuitized substrate assembly in which two or more subassemblies having potentially disparate coefficients of thermal expansion (CTE) are aligned and Z-axis interconnection are created during bonding. The metallurgies of the conductors, and those of a multilayer capable conductive paste, are effectively mixed and the flowable interim dielectric used between the mating subassemblies flows to engage and surround the conductor coupling.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: September 20, 2016
    Inventors: Rabindra N. Das, Voya R. Markovich, John M. Lauffer, Roy H. Magnuson, Konstantinos I. Papathomas, Benson Chan
  • Patent number: 8685284
    Abstract: A conducting paste and method of forming the paste for device level interconnection. The conducting paste contains metal loading in the range 80-95% that is useful for making five micron device level interconnects. The conducting paste is made by mixing two different conducting pastes, each paste maintaining its micro level individual rich region in the mixed paste even after final curing. One paste contains at least one low melting point alloy and the other paste contains noble metal fillers such as gold or silver flakes. In general, average flake size below five micron is suitable for five micron interconnects. However, 1 micron or smaller silver flakes and an LMP mixture is preferred for five micron interconnects. The amount of LMP based paste in the final mixture is preferably 20-50% by weight. The nano micro paste embodiment shows good electrical yield (81%) and low contact resistance.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: April 1, 2014
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Rabindra N. Das, Roy H. Magnuson, Mark D. Poliks, Voya R. Markovich
  • Patent number: 8592299
    Abstract: A structure for minimizing resistance between a semi-insulating x-ray detector crystal and an electrically conducting substrate. Electrical contact pads are disposed on the detector crystal and on the substrate with an electrical interconnect between the contact pads formed from a conductive adhesive and washed solder in electrical and mechanical communication with the pads.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: November 26, 2013
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Voya R. Markovich, Rabindra N. Das, Rajinder S. Rai, Michael Vincent
  • Patent number: 8558374
    Abstract: An electronic package with two circuitized substrates which sandwich an interposer therebetween, the interposer electrically interconnecting the substrates while including at least one electrical component (e.g., a power module) substantially therein to provide even further operational capabilities for the resulting package.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: October 15, 2013
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Voya R. Markovich, Rabindra N. Das, Frank D. Egitto, James J. McNamara, Jr.
  • Patent number: 8499440
    Abstract: A method of making a circuitized substrate including a composite layer having a first dielectric sub-layer including a halogen-free resin and fibers dispersed therein and a second dielectric sub-layer without fibers but also including a halogen-free resin with inorganic particulates therein.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: August 6, 2013
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Robert M. Japp, Voya R. Markovich, Kostas I. Papthomas
  • Patent number: 8499445
    Abstract: Printed conductive lines and a method of preparing them using polymer nanocomposites with low resistivity and high current carrying capacity. Plasma treatment selectively removes polymers/organics from nanocomposites. Subsequent selective metal is deposited on top of the exposed metal surface of the printed conductive lines in order to improve current carrying capacity of the conductive printed lines. The printed conductive lines use a conductive ink or printing process and are then cured thermally and/or by a lamination process. Next, the printed conductive lines are treated with the plasma for 5-15 minutes in order to remove organics. E-less copper (Cu) is selectively deposited only at the conducting particle surface of the printed conductive lines. If desired, e-less gold, silver, tin, or tin-lead can be deposited on top of the e-less Cu.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: August 6, 2013
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Rabindra N. Das, Frank D. Egitto, Voya R. Markovich
  • Patent number: 8501575
    Abstract: Methods of forming embedded, multilayer capacitors in printed circuit boards wherein copper or other electrically conductive channels are formed on a dielectric substrate. The channels may be preformed using etching or deposition techniques. A photoimageable dielectric is an upper surface of the laminate. Exposing and etching the photoimageable dielectric exposes the space between the copper traces. These spaces are then filled with a capacitor material. Finally, copper is either laminated or deposited atop the structure. This upper copper layer is then etched to provide electrical interconnections to the capacitor elements. Traces may be formed to a height to meet a plane defining the upper surface of the dielectric substrate or thin traces may be formed on the remaining dielectric surface and a secondary copper plating process is utilized to raise the height of the traces.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: August 6, 2013
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Rabindra N. Das, Frank D. Egitto, How T. Lin, John M. Lauffer, Voya R. Markovich
  • Patent number: 8446707
    Abstract: A low loss capacitance and low loss insulating dielectric material consisting of a thermosetting resin, thermoplastic resin, a cross-linker, and containing a quantity of ferroelectric ceramic nano-particles of barium titanate within. The combined low loss insulating dielectric layer and a low loss capacitive layer resulting from the material allows one continuous layer that can form internal capacitors and permit the modifying the dielectric thickness between signal layers for impedance matching within a layer of substrate. More significantly, the applied layer of low loss capacitive materials can simultaneously act as a capacitor as well as a dielectric for separation of signal layers.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: May 21, 2013
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Rabindra N. Das, Konstantinos I. Papathomas, Voya R. Markovich, James J. McNamara
  • Patent number: 8405229
    Abstract: An electronic package for interconnecting a high density pattern of conductors of an electronic device (e.g., semiconductor chip) of the package and a less dense pattern of conductors on a circuitized substrate (e.g., PCB), the package including in one embodiment but a single thin dielectric layer (e.g., Kapton) with a high density pattern of openings therein and a circuit pattern on an opposing surface which includes both a high density pattern of conductors and a less dense pattern of conductors. Conductive members are positioned in the openings to electrically interconnect conductors of the electronic device to conductors of the circuitized substrate when the package is positioned thereon. In another embodiment, the interposer includes a second dielectric layer bonded to the first, with conductive members extending through the second layer to connect to the less dense pattern of circuitized substrate conductors.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: March 26, 2013
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Timothy Antesberger, Frank D. Egitto, Voya R. Markovich, William E. Wilson
  • Publication number: 20130033827
    Abstract: A multilayer capable electrically conductive adhesive (ECA) mixture for connecting multilevel Z-axis interconnects and a method of forming the ECA for connecting multilevel Z-axis interconnects. The multilayer capable ECA contains a mixture of constituent components that allow the paste to be adapted to specific requirements wherein the method of making a circuitized substrate assembly in which two or more subassemblies having potentially disparate coefficients of thermal expansion (CTE) are aligned and Z-axis interconnection are created during bonding. The metallurgies of the conductors, and those of a multilayer capable conductive paste, are effectively mixed and the flowable interim dielectric used between the mating subassemblies flows to engage and surround the conductor coupling.
    Type: Application
    Filed: August 5, 2011
    Publication date: February 7, 2013
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Rabindra N. Das, Voya R. Markovich, John M. Lauffer, Roy H. Magnuson, Konstantinos I. Papathomas, Benson Chan
  • Publication number: 20130025839
    Abstract: An organic substrate capable of providing effective heat transfer through its entire thickness by the use of parallel, linear common thermally conductive openings that extend through the substrate, the substrate having thin dielectric layers bonded together to form an integral substrate structure. The structure is adapted for assisting in providing cooling of high temperature electrical components on one side by effectively transferring heat from the components to a cooling structure positioned on an opposing side. Methods of making the substrate are also provided, as is an electrical assembly including the substrate, component and cooling structure.
    Type: Application
    Filed: July 25, 2011
    Publication date: January 31, 2013
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Frank Egitto, Voya R. Markovich, Varaprasad V. Calmidi, Timothy Antesberger, William E. Wilson
  • Patent number: 8299371
    Abstract: A circuitized substrate and method of making same in which quantities of thru-holes are formed within a dielectric interposer layer. The substrate includes two printed circuit board (PCB) layers bonded to opposing sides of the interposer with electrically conductive features of each PCB aligned with the interposer thru-holes. Resistive paste is positioned on the conductive features located adjacent the thru-holes to form controlled electrically resistive connections between conductive features of the two PCBs. A circuitized substrate assembly and method of making same are also disclosed.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: October 30, 2012
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Rabindra N. Das, John M. Lauffer, Voya R. Markovich, James J. McNamara, Jr.
  • Patent number: 8288857
    Abstract: A tamper-resistant microchip package contains fluid- or nanofluid-filled capsules, channels, or reservoirs, wherein the fluids, either alone or in combination, can destroy circuitry by etching, sintering, or thermally destructing when reverse engineering of the device is attempted. The fluids are released when the fluid-filled cavities are cut away for detailed inspection of the microchip. Nanofluids may be used for the sintering process, and also to increase the thermal conductivity of the fluid for die thermal management. Through-vias and micro vias may be incorporated into the design to increase circuitry destruction efficacy by improving fluid/chip contact. Thermal interface materials may also be utilized to facilitate chip cooling.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: October 16, 2012
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Rabindra N. Das, Voya R. Markovich, James J. McNamara, Jr., Mark D. Poliks
  • Publication number: 20120260063
    Abstract: A detachable, logic leaf module having dendritic projections on a surface is connected to a recessed area on the surface of a cluster interface board. The projections are used for electrically connecting the logic module device to the cluster interface board or the like, the projections on the surface of the logic leaf being flexibly and conductively wired to the receiving area on the surface of the cluster interface board. The logic leaf connector is removable without the need for solder softening thermal cycles or special tools, and permits the simple removal or replacement of an individual leaf at any time.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 11, 2012
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Voya R. Markovich, How T. Lin, Benson Chan, Frank D. Egitto
  • Publication number: 20120257343
    Abstract: A method of forming a circuitized substrate for use in electronic packages. A substrate layer is provided that has a copper pad on a surface. A conductive seed layer and a photoresist layer are placed on the surface. The photoresist is developed and conductive material is placed within the developed features and a second conductive material placed on the first conductive material. The photoresist and conductive seed layer are removed to leave a micro-pillar array. The joining and lamination of two circuitized substrate layers utilizes the micro-pillar array for the electrical connection of the circuitized substrate layers.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 11, 2012
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Rabindra N. Das, Konstantinos I. Papathomas, Mark D. Poliks, Voya R. Markovich
  • Publication number: 20120247822
    Abstract: A substrate for use in a laminated chip carrier (LCC) and a system in package (SiP) device having a coreless buildup layer and at least one metal and at least one dielectric layer. The coreless buildup dielectric layers can include thermoset and thermoplastic resin.
    Type: Application
    Filed: March 28, 2011
    Publication date: October 4, 2012
    Applicant: Endicott Interconnect Technologies, Inc.
    Inventors: James W. Fuller, JR., Jeffrey Knight, Voya R. Markovich, Kostas I. Papathomas
  • Publication number: 20120228014
    Abstract: A circuitized substrate for use in such electrical structures as information handling systems wherein the substrate includes a capacitive substrate as part thereof. The capacitive substrate includes a thin film layer of capacitive material strategically positioned on a conductive layer relative to added electrically conductive elements to in turn provide a plurality of internal capacitors within the final circuitized substrate during operation thereof. A method of making such a circuitized substrate is also provided.
    Type: Application
    Filed: March 8, 2011
    Publication date: September 13, 2012
    Applicant: Endicott Interconnect Technologies, Inc.
    Inventors: Rabindra N. Das, Mark D. Poliks, Voya R. Markovich, Peter A. Moschak
  • Publication number: 20120223047
    Abstract: Methods of forming embedded, multilayer capacitors in printed circuit boards wherein copper or other electrically conductive channels are formed on a dielectric substrate. The channels may be preformed using etching or deposition techniques. A photoimageable dielectric is an upper surface of the laminate. Exposing and etching the photoimageable dielectric exposes the space between the copper traces. These spaces are then filled with a capacitor material. Finally, copper is either laminated or deposited atop the structure. This upper copper layer is then etched to provide electrical interconnections to the capacitor elements. Traces may be formed to a height to meet a plane defining the upper surface of the dielectric substrate or thin traces may be formed on the remaining dielectric surface and a secondary copper plating process is utilized to raise the height of the traces.
    Type: Application
    Filed: October 22, 2010
    Publication date: September 6, 2012
    Applicant: Endicott Interconnect Technologies, Inc.
    Inventors: Rabindra N. Das, Frank D. Egitto, How T. Lin, John M. Lauffer, Voya R. Markovich
  • Patent number: 8245392
    Abstract: A method of making an electronic package designed for interconnecting high density patterns of conductors of an electronic device (e.g., semiconductor chip) and less dense patterns of conductors of hosting circuitized substrates (e.g., chip carriers, PCBs). In one embodiment, the method includes bonding a chip to a single dielectric layer, forming a high density pattern of conductors on one surface of the layer, forming openings in the layer and then depositing metallurgy to form a desired circuit pattern which is then adapted for engaging and being electrically coupled to a corresponding pattern on yet another hosting substrate. According to another embodiment of the invention, an electronic package using a dual layered interposer is provided. Also provided are methods of making circuitized substrate assemblies using the electronic packages made using the invention's teachings.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: August 21, 2012
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Timothy Antesberger, Frank D. Egitto, Voya R. Markovich, William E. Wilson