Patents by Inventor Vyacheslav P. Yakovlev

Vyacheslav P. Yakovlev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10700639
    Abstract: A system and method of operating a magnetron power source can achieve a broad range of output power control by operating a magnetron with its cathode voltage lower than that needed for free running oscillations (e.g., below the Kapitsa critical voltage or equivalently below the Hartree voltage) A sufficiently strong injection-locking signal enables the output power to be coherently generated and to be controlled over a broad power range by small changes in the cathode voltage. In one embodiment, the present system and method is used for a practical, single, frequency-locked 2-magnetron system design.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: June 30, 2020
    Assignee: Muons, Inc.
    Inventors: Grigory M. Kazakevich, Michael L. Neubauer, Valeri A. Lebedev, Vyacheslav P. Yakovlev
  • Publication number: 20200044607
    Abstract: A system and method of operating a magnetron power source can achieve a broad range of output power control by operating a magnetron with its cathode voltage lower than that needed for free running oscillations (e.g., below the Kapitsa critical voltage or equivalently below the Hartree voltage) A sufficiently strong injection-locking signal enables the output power to be coherently generated and to be controlled over a broad power range by small changes in the cathode voltage. In one embodiment, the present system and method is used for a practical, single, frequency-locked 2-magnetron system design.
    Type: Application
    Filed: August 2, 2019
    Publication date: February 6, 2020
    Inventors: Grigory M. Kazakevich, Michael L. Neubauer, Valeri A. Lebedev, Vyacheslav P. Yakovlev
  • Patent number: 10374551
    Abstract: A system and method of operating a magnetron power source can achieve a broad range of output power control by operating a magnetron with its cathode voltage lower than that needed for free running oscillations (e.g., below the Kapitsa critical voltage or equivalently below the Hartree voltage) A sufficiently strong injection-locking signal enables the output power to be coherently generated and to be controlled over a broad power range by small changes in the cathode voltage. In one embodiment, the present system and method is used for a practical, single, frequency-locked 2-magnetron system design.
    Type: Grant
    Filed: February 12, 2017
    Date of Patent: August 6, 2019
    Assignee: Muons, Inc.
    Inventors: Grigory M. Kazakevich, Michael L. Neubauer, Valeri A. Lebedev, Vyacheslav P. Yakovlev
  • Publication number: 20170250651
    Abstract: A system and method of operating a magnetron power source can achieve a broad range of output power control by operating a magnetron with its cathode voltage lower than that needed for free running oscillations (e.g., below the Kapitsa critical voltage or equivalently below the Hartree voltage) A sufficiently strong injection-locking signal enables the output power to be coherently generated and to be controlled over a broad power range by small changes in the cathode voltage. In one embodiment, the present system and method is used for a practical, single, frequency-locked 2-magnetron system design.
    Type: Application
    Filed: February 12, 2017
    Publication date: August 31, 2017
    Applicant: Muons, Inc.
    Inventors: Grigory M. Kazakevich, Michael L. Neubauer, Valeri A. Lebedev, Vyacheslav P. Yakovlev
  • Patent number: 8847489
    Abstract: A low-voltage, multi-beam, multi-MW RF source that operates at a voltage less than or equal to approximately 60 kV and generates at least one MW. The RF source includes a cathode configured to generate a plurality of beamlets. An input cavity and output cavity are common to the plurality of beamlets. A plurality of gain cavities are provided between the input and output cavities, each having a plurality of openings corresponding to the plurality of beamlets. The power source may further include a plurality of cathodes, each cathode generating a plurality of beamlets, wherein the input and output cavities are common to the plurality of beamlets from each of the plurality of cathodes, and a separate set of gain cavities are provided for each cathode. A single cathode version generates approximately 2.5 MW, and a four cathode version having four independent cavity systems and a common magnetic system generates approximately 10 MW.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: September 30, 2014
    Assignee: Omega P-Inc.
    Inventors: Vladimir Teryaev, Vyacheslav P. Yakovlev, Nikolay Solyak, Sergey Y. Kazakov
  • Publication number: 20110089829
    Abstract: A low-voltage, multi-beam, multi-MW RF source that operates at a voltage less than or equal to approximately 60 kV and generates at least one MW. The RF source includes a cathode configured to generate a plurality of beamlets. An input cavity and output cavity are common to the plurality of beamlets. A plurality of gain cavities are provided between the input and output cavities, each having a plurality of openings corresponding to the plurality of beamlets. The power source may further include a plurality of cathodes, each cathode generating a plurality of beamlets, wherein the input and output cavities are common to the plurality of beamlets from each of the plurality of cathodes, and a separate set of gain cavities are provided for each cathode. A single cathode version generates approximately 2.5 MW, and a four cathode version having four independent cavity systems and a common magnetic system generates approximately 10 MW.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 21, 2011
    Applicant: OMEGA P-INC.
    Inventors: Vladimir TERYAEV, Vyacheslav P. Yakovlev, Nikolay Solyak, Sergey Y. Kazakov
  • Patent number: 7816870
    Abstract: A method and systems for fast ferroelectric tuning of RF power used in a particle accelerating system. By adjusting the voltages fed to the ferroelectric phase shift controller, the amplitude and phase of the RF power wave are altered, thus changing the coupling of the power generating circuit and the superconducting cavity. By altering this coupling rapidly, maximum power transfer efficiency can be achieved, which is important given the large amounts of power shunted through the particle accelerating system. In one embodiment, the ferroelectric tuner is optimally made of a magic-T waveguide circuit element and two phase shifters, although other implementations of the system may be utilized.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: October 19, 2010
    Assignee: Omega-P, Inc.
    Inventors: Vyacheslav P. Yakovlev, Sergey Y. Kazakov, Jay L. Hirshfield
  • Patent number: 7786675
    Abstract: The present invention relates to methods and systems for fast ferroelectric tuning of RF power used in a particle accelerating system. By adjusting the voltages fed to the ferroelectric phase shift controller, the amplitude and phase of the RF power wave are altered, thus changing the coupling of the power generating circuit and the superconducting cavity. By altering this coupling rapidly, maximum power transfer efficiency can be achieved, which is important given the large amounts of power shunted through the particle accelerating system. In one embodiment, the ferroelectric tuner is optimally made of a magic-T waveguide circuit element and two phase shifters, although other implementations of the system may be utilized. Alternative phase shifters are shown.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: August 31, 2010
    Assignee: Omega-P, Inc.
    Inventors: Vyacheslav P. Yakovlev, Sergey Y. Kazakov, Jay L. Hirshfield