Patents by Inventor W. Craig Bauer

W. Craig Bauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230314353
    Abstract: A method for measuring thermal resistance between a thermal component of an instrument and a consumable includes contacting a known consumable with a thermal component to be tested; driving the thermal component using a periodic sine wave input based on a predetermined interrogation frequency; measuring temperature outputs from a thermal sensor responsive to the periodic sine wave input; multiplying the temperature outputs by a reference signal in phase with the periodic sine wave input and calculating the resultant DC signal component to determine an in-phase component X; multiplying the plurality of temperature outputs by a 90° phase-shifted reference signal and calculating the resultant DC signal component to determine a quadrature, out-of-phase component Y; calculating a phase offset responsive to the periodic sine wave input based on tan?1 (Y/X) or a tan 2(X,Y); and determining a resistance value for the thermal interface using a calibrated resistance-phase offset equation and the calculated phase offset
    Type: Application
    Filed: June 8, 2023
    Publication date: October 5, 2023
    Inventor: W. Craig Bauer
  • Patent number: 11709143
    Abstract: A method for measuring thermal resistance between a thermal component of an instrument and a consumable includes contacting a known consumable with a thermal component to be tested; driving the thermal component using a periodic sine wave input based on a predetermined interrogation frequency; measuring temperature outputs from a thermal sensor responsive to the periodic sine wave input; multiplying the temperature outputs by a reference signal in phase with the periodic sine wave input and calculating the resultant DC signal component to determine an in-phase component X; multiplying the plurality of temperature outputs by a 90° phase-shifted reference signal and calculating the resultant DC signal component to determine a quadrature, out-of-phase component Y; calculating a phase offset responsive to the periodic sine wave input based on tan?1 (Y/X) or atan2(X, Y); and determining a resistance value for the thermal interface using a calibrated resistance-phase offset equation and the calculated phase offset.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: July 25, 2023
    Assignee: ILLUMINA, INC.
    Inventor: W. Craig Bauer
  • Publication number: 20220228999
    Abstract: A method for measuring thermal resistance between a thermal component of an instrument and a consumable includes contacting a known consumable with a thermal component to be tested; driving the thermal component using a periodic sine wave input based on a predetermined interrogation frequency; measuring temperature outputs from a thermal sensor responsive to the periodic sine wave input; multiplying the temperature outputs by a reference signal in phase with the periodic sine wave input and calculating the resultant DC signal component to determine an in-phase component X; multiplying the plurality of temperature outputs by a 90° phase-shifted reference signal and calculating the resultant DC signal component to determine a quadrature, out-of-phase component Y; calculating a phase offset responsive to the periodic sine wave input based on tan?1 (Y/X) or atan2(X, Y); and determining a resistance value for the thermal interface using a calibrated resistance-phase offset equation and the calculated phase offset.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 21, 2022
    Inventor: W. Craig Bauer
  • Patent number: 11327035
    Abstract: A method for measuring thermal resistance between a thermal component of an instrument and a consumable includes contacting a known consumable with a thermal component to be tested; driving the thermal component using a periodic sine wave input based on a predetermined interrogation frequency; measuring temperature outputs from a thermal sensor responsive to the periodic sine wave input; multiplying the temperature outputs by a reference signal in phase with the periodic sine wave input and calculating the resultant DC signal component to determine an in-phase component X; multiplying the plurality of temperature outputs by a 90° phase-shifted reference signal and calculating the resultant DC signal component to determine a quadrature, out-of-phase component Y; calculating a phase offset responsive to the periodic sine wave input based on tan?1 (Y/X) or a tan 2(X,Y); and determining a resistance value for the thermal interface using a calibrated resistance-phase offset equation and the calculated phase offset
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: May 10, 2022
    Assignee: ILLUMINA, INC.
    Inventor: W. Craig Bauer
  • Publication number: 20210048400
    Abstract: A method for measuring thermal resistance between a thermal component of an instrument and a consumable includes contacting a known consumable with a thermal component to be tested; driving the thermal component using a periodic sine wave input based on a predetermined interrogation frequency; measuring temperature outputs from a thermal sensor responsive to the periodic sine wave input; multiplying the temperature outputs by a reference signal in phase with the periodic sine wave input and calculating the resultant DC signal component to determine an in-phase component X; multiplying the plurality of temperature outputs by a 90° phase-shifted reference signal and calculating the resultant DC signal component to determine a quadrature, out-of-phase component Y; calculating a phase offset responsive to the periodic sine wave input based on tan?1 (Y/X) or a tan 2(X,Y); and determining a resistance value for the thermal interface using a calibrated resistance-phase offset equation and the calculated phase offset
    Type: Application
    Filed: July 24, 2020
    Publication date: February 18, 2021
    Inventor: W. Craig Bauer