Patents by Inventor W. Henry Benner
W. Henry Benner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240393354Abstract: The invention provides methods of preparation of lipoproteins from a biological sample, including HDL, LDL, Lp(a), IDL, and VLDL, for diagnostic purposes utilizing differential charged particle mobility analysis methods. Further provided are methods for analyzing the size distribution of lipoproteins by differential charged particle mobility, which lipoproteins are prepared by methods of the invention. Further provided are methods for assessing lipid-related health risk, cardiovascular condition, risk of cardiovascular disease, and responsiveness to a therapeutic intervention, which methods utilize lipoprotein size distributions determined by methods of the invention.Type: ApplicationFiled: August 1, 2024Publication date: November 28, 2024Inventors: Michael P. Caulfield, Richard E. Reitz, Shuguang Li, Gloria Kwangja Lee, Ronald Krauss, Patricia J. Blanche, W. Henry Benner, Earl Cornell
-
Publication number: 20240319054Abstract: Apparatus and methods are described for preparing samples for examination by cryo-electron microscopy. Molecules of interest, such as protein molecules in a solution, are electrosprayed and converted to singly-charged gas-phase ions. Particular conformation(s) of the protein ions are selected by using an ion mobility filter and deposited onto a cryo-EM grid at sub-eV kinetic energy for the purpose of preserving the molecule's higher order structure.Type: ApplicationFiled: May 10, 2024Publication date: September 26, 2024Applicant: ION DX, INC.Inventors: W. Henry Benner, Ben Aguilar
-
Patent number: 12055554Abstract: The invention provides methods of preparation of lipoproteins from a biological sample, including HDL, LDL, Lp(a), IDL, and VLDL, for diagnostic purposes utilizing differential charged particle mobility analysis methods. Further provided are methods for analyzing the size distribution of lipoproteins by differential charged particle mobility, which lipoproteins are prepared by methods of the invention. Further provided are methods for assessing lipid-related health risk, cardiovascular condition, risk of cardiovascular disease, and responsiveness to a therapeutic intervention, which methods utilize lipoprotein size distributions determined by methods of the invention.Type: GrantFiled: May 12, 2023Date of Patent: August 6, 2024Assignee: Quest Diagnostics Investments IncorporatedInventors: Michael P. Caulfield, Richard E Reitz, Shuguang Li, Gloria Kwangja Lee, Ronald Krauss, Patricia J. Blanche, W. Henry Benner, Earl Cornell
-
Patent number: 11796505Abstract: Apparatuses and methods are described for determining properties of ions travelling through a gas under the influence of an electric field. The apparatuses and methods can be understood to provide measurements of the electrical mobility of ions as useful for determining the electrical mobility constant Ko of electrosprayed substances, such as proteins. The apparatuses and methods relate to the scientific discipline of ion mobility spectrometry. Modules connected to ion mobility spectrometers provide stress to substances for the purpose of investigating, for example, the thermal stability of proteins. One form of the technology includes a tubular spectrometer body having an electrically conductive inner wall; a rod positioned along the longitudinal center of the body and electrodes positioned on, but electrically isolated from, the inner wall, where the ratio of the radius of the tubular spectrometer body to the ratio of the radius of the rod is at least 20.Type: GrantFiled: March 18, 2022Date of Patent: October 24, 2023Assignee: ION DX, INC.Inventors: W. Henry Benner, Michael J. Bogan, Ben Aguilar
-
Publication number: 20230280360Abstract: The invention provides methods of preparation of lipoproteins from a biological sample, including HDL, LDL, Lp(a), IDL, and VLDL, for diagnostic purposes utilizing differential charged particle mobility analysis methods. Further provided are methods for analyzing the size distribution of lipoproteins by differential charged particle mobility, which lipoproteins are prepared by methods of the invention. Further provided are methods for assessing lipid-related health risk, cardiovascular condition, risk of cardiovascular disease, and responsiveness to a therapeutic intervention, which methods utilize lipoprotein size distributions determined by methods of the invention.Type: ApplicationFiled: May 12, 2023Publication date: September 7, 2023Inventors: Michael P. Caulfield, Richard E Reitz, Shuguang Li, Gloria Kwangja Lee, Ronald Krauss, Patricia J. Blanche, W. Henry Benner, Earl Cornell
-
Patent number: 11680949Abstract: The invention provides methods of preparation of lipoproteins from a biological sample, including HDL, LDL, Lp(a), IDL, and VLDL, for diagnostic purposes utilizing differential charged particle mobility analysis methods. Further provided are methods for analyzing the size distribution of lipoproteins by differential charged particle mobility, which lipoproteins are prepared by methods of the invention. Further provided are methods for assessing lipid-related health risk, cardiovascular condition, risk of cardiovascular disease, and responsiveness to a therapeutic intervention, which methods utilize lipoprotein size distributions determined by methods of the invention.Type: GrantFiled: March 1, 2021Date of Patent: June 20, 2023Assignee: Quest Diagnostics Investments IncorporatedInventors: Michael P. Caulfield, Richard E Reitz, Shuguang Li, Gloria Kwangja Lee, Ronald Krauss, Patricia J. Blanche, W. Henry Benner, Earl Cornell
-
Publication number: 20220276201Abstract: Apparatuses and methods are described for determining properties of ions travelling through a gas under the influence of an electric field. The apparatuses and methods can be understood to provide measurements of the electrical mobility of ions as useful for determining the electrical mobility constant Ko of electrosprayed substances, such as proteins. The apparatuses and methods relate to the scientific discipline of ion mobility spectrometry. Modules connected to ion mobility spectrometers provide stress to substances for the purpose of investigating, for example, the thermal stability of proteins. One form of the technology includes a tubular spectrometer body having an electrically conductive inner wall; a rod positioned along the longitudinal center of the body and electrodes positioned on, but electrically isolated from, the inner wall, where the ratio of the radius of the tubular spectrometer body to the ratio of the radius of the rod is at least 20.Type: ApplicationFiled: March 18, 2022Publication date: September 1, 2022Applicant: ION DX, INC.Inventors: W. Henry Benner, Michael J. Bogan, Ben Aguilar
-
Patent number: 11333629Abstract: Apparatuses and methods are described for determining properties of ions travelling through a gas under the influence of an electric field. The apparatuses and methods can be understood to provide measurements of the electrical mobility of ions as useful for determining the electrical mobility constant Ko of electrosprayed substances, such as proteins. The apparatuses and methods relate to the scientific discipline of ion mobility spectrometry. Modules connected to ion mobility spectrometers provide stress to substances for the purpose of investigating, for example, the thermal stability of proteins. One form of the technology includes a tubular spectrometer body having an electrically conductive inner wall; a rod positioned along the longitudinal center of the body and electrodes positioned on, but electrically isolated from, the inner wall, where the ratio of the radius of the tubular spectrometer body to the radius of the rod is at least 20.Type: GrantFiled: July 10, 2019Date of Patent: May 17, 2022Assignee: ION DX, INC.Inventors: W. Henry Benner, Michael J. Bogan, Ben Aguilar
-
Publication number: 20210278369Abstract: Apparatuses and methods are described for determining properties of ions travelling through a gas under the influence of an electric field. The apparatuses and methods can be understood to provide measurements of the electrical mobility of ions as useful for determining the electrical mobility constant Ko of electrosprayed substances, such as proteins. The apparatuses and methods relate to the scientific discipline of ion mobility spectrometry. Modules connected to ion mobility spectrometers provide stress to substances for the purpose of investigating, for example, the thermal stability of proteins. One form of the technology includes a tubular spectrometer body having an electrically conductive inner wall; a rod positioned along the longitudinal center of the body and electrodes positioned on, but electrically isolated from, the inner wall, where the ratio of the radius of the tubular spectrometer body to the ratio of the radius of the rod is at least 20.Type: ApplicationFiled: July 10, 2019Publication date: September 9, 2021Inventors: W. Henry Benner, Michael J. Bogan, Ben Aguilar
-
Publication number: 20210181217Abstract: The invention provides methods of preparation of lipoproteins from a biological sample, including HDL, LDL, Lp(a), IDL, and VLDL, for diagnostic purposes utilizing differential charged particle mobility analysis methods. Further provided are methods for analyzing the size distribution of lipoproteins by differential charged particle mobility, which lipoproteins are prepared by methods of the invention. Further provided are methods for assessing lipid-related health risk, cardiovascular condition, risk of cardiovascular disease, and responsiveness to a therapeutic intervention, which methods utilize lipoprotein size distributions determined by methods of the invention.Type: ApplicationFiled: March 1, 2021Publication date: June 17, 2021Inventors: Michael P. Caulfield, Richard E Reitz, Shuguang Li, Gloria Kwangja Lee, Ronald Krauss, Patricia J. Blanche, W. Henry Benner, Earl Cornell
-
Patent number: 10948503Abstract: The invention provides methods of preparation of lipoproteins from a biological sample, including HDL, LDL, Lp(a), IDL, and VLDL, for diagnostic purposes utilizing differential charged particle mobility analysis methods. Further provided are methods for analyzing the size distribution of lipoproteins by differential charged particle mobility, which lipoproteins are prepared by methods of the invention. Further provided are methods for assessing lipid-related health risk, cardiovascular condition, risk of cardiovascular disease, and responsiveness to a therapeutic intervention, which methods utilize lipoprotein size distributions determined by methods of the invention.Type: GrantFiled: February 21, 2019Date of Patent: March 16, 2021Assignee: Quest Diagnostics Investments IncorporatedInventors: Michael P. Caulfield, Richard E. Reitz, Shuguang Li, Gloria Kwangja Lee, Ronald Krauss, Patricia J. Blanche, W. Henry Benner, Earl Cornell
-
Publication number: 20200132627Abstract: Methods of ion mobility spectrometry are provided in which a sample material is modified by exposing the sample material to physical stress to produce a modified material, ions are generated from the modified material to produce generated ions, the generated ions are separated to produce separated ions and the separated ions are detected. The modified material is delivered to an electrospray generator and are separated and detected. Embodiments of the invention modify the ions after they are generated. After detection, the data is processed mathematically to produce processed data that is recognized by experts in the field of ion mobility spectrometry. Apparatuses are provided to carry out the methods.Type: ApplicationFiled: June 14, 2018Publication date: April 30, 2020Applicant: ION DX, INC.Inventors: W. Henry Benner, Michael J. Bogan
-
Publication number: 20190187160Abstract: The invention provides methods of preparation of lipoproteins from a biological sample, including HDL, LDL, Lp(a), IDL, and VLDL, for diagnostic purposes utilizing differential charged particle mobility analysis methods. Further provided are methods for analyzing the size distribution of lipoproteins by differential charged particle mobility, which lipoproteins are prepared by methods of the invention. Further provided are methods for assessing lipid-related health risk, cardiovascular condition, risk of cardiovascular disease, and responsiveness to a therapeutic intervention, which methods utilize lipoprotein size distributions determined by methods of the invention.Type: ApplicationFiled: February 21, 2019Publication date: June 20, 2019Inventors: Michael P. Caulfield, Richard E. Reitz, Shuguang Li, Gloria Kwangja Lee, Ronald Krauss, Patricia J. Blanche, W. Henry Benner, Earl Cornell
-
Patent number: 10204774Abstract: Instruments are disclosed for analyzing ions from about 1000 to 10,000,000 Daltons by controlling a gaseous medium through which the ions travel under the influence of an electric field so that properties of the ions, such as diameter, electrical mobility, and charge, are measured. One embodiment of the disclosed instruments includes an ion source, a nozzle, a jet relaxation region, an ion accumulation region, an electronic gate, a flow chamber and an ion detector.Type: GrantFiled: May 29, 2017Date of Patent: February 12, 2019Inventor: W. Henry Benner
-
Publication number: 20180011117Abstract: The invention provides methods of preparation of lipoproteins from a biological sample, including HDL, LDL, Lp(a), IDL, and VLDL, for diagnostic purposes utilizing differential charged particle mobility analysis methods. Further provided are methods for analyzing the size distribution of lipoproteins by differential charged particle mobility, which lipoproteins are prepared by methods of the invention. Further provided are methods for assessing lipid-related health risk, cardiovascular condition, risk of cardiovascular disease, and responsiveness to a therapeutic intervention, which methods utilize lipoprotein size distributions determined by methods of the invention.Type: ApplicationFiled: September 21, 2017Publication date: January 11, 2018Inventors: Michael P. Caulfield, Richard E Reitz, Shuguang Li, Gloria Kwangja Lee, Ronald Krauss, Patricia J. Blanche, W. Henry Benner, Earl Cornell
-
Patent number: 9791464Abstract: The invention provides methods of preparation of lipoproteins from a biological sample, including HDL, LDL, Lp(a), IDL, and VLDL, for diagnostic purposes utilizing differential charged particle mobility analysis methods. Further provided are methods for analyzing the size distribution of lipoproteins by differential charged particle mobility, which lipoproteins are prepared by methods of the invention. Further provided are methods for assessing lipid-related health risk, cardiovascular condition, risk of cardiovascular disease, and responsiveness to a therapeutic intervention, which methods utilize lipoprotein size distributions determined by methods of the invention.Type: GrantFiled: June 1, 2015Date of Patent: October 17, 2017Assignee: QUEST DIAGNOSTICS INVESTMENTS INCORPORATEDInventors: Michael P. Caulfield, Richard E Reitz, Shuguang Li, Gloria Kwangja Lee, Ronald Krauss, Patricia J. Blanche, W. Henry Benner, Earl Cornell
-
Publication number: 20170263427Abstract: Instruments are disclosed for analyzing ions from about 1000 to 10,000,000 Daltons by controlling a gaseous medium through which the ions travel under the influence of an electric field so that properties of the ions, such as diameter, electrical mobility, and charge, are measured. One embodiment of the disclosed instruments includes an ion source, a nozzle, a jet relaxation region, an ion accumulation region, an electronic gate, a flow chamber and an ion detector.Type: ApplicationFiled: May 29, 2017Publication date: September 14, 2017Inventor: W. Henry Benner
-
Patent number: 9666423Abstract: Instruments are disclosed for analyzing ions from about 1000 to 10,000,000 Daltons by controlling a gaseous medium through which the ions travel under the influence of an electric field so that properties of the ions, such as diameter, electrical mobility, and charge, are measured. One embodiment of the disclosed instruments include an ion source, a nozzle, a jet relaxation region, an ion accumulation region, an electronic gate, a flow chamber and an ion detector.Type: GrantFiled: May 21, 2015Date of Patent: May 30, 2017Inventor: W Henry Benner
-
Patent number: 9372135Abstract: Provided herein are fluidics platforms and related methods for performing integrated sample collection and solid-phase extraction of a target component of the sample all in one tube. The fluidics platform comprises a pump, particles for solid-phase extraction and a particle-holding means. The method comprises contacting the sample with one or more reagents in a pump, coupling a particle-holding means to the pump and expelling the waste out of the pump while the particle-holding means retains the particles inside the pump. The fluidics platform and methods herein described allow solid-phase extraction without pipetting and centrifugation.Type: GrantFiled: September 8, 2011Date of Patent: June 21, 2016Assignee: Lawrence Livermore National Security, LLCInventors: W. Henry Benner, John M. Dzenitis
-
Publication number: 20150340221Abstract: Instruments are disclosed for analyzing ions from about 1000 to 10,000,000 Daltons by controlling a gaseous medium through which the ions travel under the influence of an electric field so that properties of the ions, such as diameter, electrical mobility, and charge, are measured. One embodiment of the disclosed instruments include an ion source, a nozzle, a jet relaxation region, an ion accumulation region, an electronic gate, a flow chamber and an ion detector.Type: ApplicationFiled: May 21, 2015Publication date: November 26, 2015Inventor: W. Henry Benner