Patents by Inventor W. Joseph Beauvais

W. Joseph Beauvais has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240252833
    Abstract: An implantable medical device (IMD) is provided that includes one or more processors and a memory coupled to the one or more processors, wherein the memory stores program instructions. The program instructions are executable by the one or more processors to obtain an initial capacitor maintenance time interval for performing maintenance on a capacitor of the IMD, obtain characteristics of interest related to at least one of the capacitor or the patient, and adjust the initial capacitor maintenance time interval to a first adjusted capacitor maintenance time interval based on the characteristics of interest.
    Type: Application
    Filed: December 7, 2023
    Publication date: August 1, 2024
    Inventors: Xing Pei, R. Jason Hemphill, David R. Bowen, W. Joseph Beauvais
  • Patent number: 7715174
    Abstract: A metal or metal alloy foil substrate, preferably an unetched and uncoated metal or metal alloy foil substrate, such as but not limited to titanium, palladium, lead, nickel, tin, platinum, silver, gold, zirconium, molybdenum, tantalum, palladium-silver alloy, platinum-rhodium alloy, platinum-ruthenium alloy, and/or platinum-iridium alloy, is used as the cathode in an electrolytic capacitor, preferably an aluminum electrolytic capacitor having a multiple anode flat, stacked capacitor configuration. Despite a 120 Hz bridge capacitance measurement lower than with etched aluminum, the use of an unetched and uncoated metal or metal alloy foil cathode according to the present invention will inhibit gas production and not cause the capacitor to swell. Furthermore, an electrolytic capacitor built with a 30 micron unetched and uncoated foil cathode according to the present invention can deliver a stored to discharge energy ratio sufficient for use in pulse discharge applications, such as an in an ICD.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: May 11, 2010
    Assignee: Pacesetter, Inc.
    Inventors: W. Joseph Beauvais, Melissa A. Moore, James L. Stevens, Thomas F. Strange, Christopher R. Feger
  • Patent number: 5596199
    Abstract: Apparatus and method for qualitatively and quantitatively analyzing a complex radiation field are provided. A passive microdosimetry detector device records the energy deposition of incident radiation using an array of microstructure non-volatile memory devices. Each microstructure non-volatile memory device is capable of storing a predetermined initial charge without requiring a power source. A radiation particle incident to a microstructure non-volatile memory device is termed an "event". Each such event may generate a charge within a sensitive volume defined by the microstructure non-volatile memory device. The charge generated within the sensitive volume alters the stored initial charge by an amount falling within a range corresponding to the energy deposited by certain particle types. Data corresponding to such charge alterations for a plurality of microstructure non-volatile memory devices within an array of such devices are presented to a qualitative analyzing device.
    Type: Grant
    Filed: February 6, 1995
    Date of Patent: January 21, 1997
    Assignee: Clemson University
    Inventors: Peter J. McNulty, W. Joseph Beauvais, David R. Roth, Wanda K. Moran, Robert A. Reed
  • Patent number: 5256879
    Abstract: Apparatus and method for qualitatively and quantitatively analyzing a complex radiation field are provided. A microdosimetry device is provided having an array of microstructure parallel p-n junctions. Each junction defines a predetermined sensitive volume within which a voltage pulse is produced responsive to incident radiation. Circuitry in communication with the detector array generates digital pulse signals representative of the voltage pulses induced within the sensitive volumes responsive to incident radiation, and further provides a summation of the digital pulses occurring at particular energies. The summations of digital pulses are compared to known energies generated by known ionizing particles in comparable sensitive volumes to generate an dose equivalent estimate. Apparatus and method for calculating the total dose from an incident radiation field may also be included.
    Type: Grant
    Filed: October 10, 1991
    Date of Patent: October 26, 1993
    Assignee: Clemson University
    Inventors: Peter J. McNulty, W. Joseph Beauvais, David R. Roth