Patents by Inventor W. Lee

W. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240143141
    Abstract: The present disclosure generally relates to underwater user interfaces.
    Type: Application
    Filed: January 5, 2024
    Publication date: May 2, 2024
    Inventors: Benjamin W. BYLENOK, Alan AN, Richard J. BLANCO, Andrew CHEN, Maxime CHEVRETON, Kyle B. CRUZ, Walton FONG, Ki Myung LEE, Sung Chang LEE, Cheng-I LIN, Kenneth H. MAHAN, Anya PRASITTHIPAYONG, Alyssa RAMDYAL, Eric SHI, Xuefeng WANG, Wei Guang WU
  • Patent number: 11967615
    Abstract: Embodiments of the present invention are directed to dual threshold voltage (VT) channel devices and their methods of fabrication. In an example, a semiconductor device includes a gate stack disposed on a substrate, the substrate having a first lattice constant. A source region and a drain region are formed on opposite sides of the gate electrode. A channel region is disposed beneath the gate stack and between the source region and the drain region. The source region is disposed in a first recess having a first depth and the drain region disposed in a second recess having a second depth. The first recess is deeper than the second recess. A semiconductor material having a second lattice constant different than the first lattice constant is disposed in the first recess and the second recess.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: April 23, 2024
    Assignee: Intel Corporation
    Inventors: Hsu-Yu Chang, Neville L. Dias, Walid M. Hafez, Chia-Hong Jan, Roman W. Olac-Vaw, Chen-Guan Lee
  • Patent number: 11966835
    Abstract: A sparse convolutional neural network accelerator system that dynamically and efficiently identifies fine-grained parallelism in sparse convolution operations. The system determines matching pairs of non-zero input activations and weights from the compacted input activation and weight arrays utilizing a scalable, dynamic parallelism discovery unit (PDU) that performs a parallel search on the input activation array and the weight array to identify reducible input activation and weight pairs.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: April 23, 2024
    Assignee: NVIDIA CORP.
    Inventors: Ching-En Lee, Yakun Shao, Angshuman Parashar, Joel Emer, Stephen W. Keckler
  • Publication number: 20240122712
    Abstract: Apparatus, for use at a valve of a heart of a subject, includes a first catheter, a second catheter, and a translation element. The translation element is connected to, and operatively joins, the distal ends of the first catheter and the second catheter. The translation element is operable to translate the distal ends laterally with respect to each other to transition the apparatus between (i) a first state in which the distal ends are held next to each other for transluminal advancement to the heart, and (ii) a second state in which the distal ends are spaced apart from each other for positioning at a first location on the annulus and a second location on the annulus, respectively. The apparatus is configured to, while in the second state, from the distal ends, anchor a first tissue anchor at the first location, and a second tissue anchor at the second location.
    Type: Application
    Filed: December 21, 2023
    Publication date: April 18, 2024
    Inventors: Jonathan Goodwin, Michael W. Sutherland, Morgan House, Richard J. Morrill, Matt Guimond, Christopher C. Lee, Kate E. Cutuli, Nareak Douk
  • Patent number: 11954932
    Abstract: A computer-implemented method for detecting a target object on a document page that includes detecting a sample target area on a sample document page, generating an image by overlapping a plurality of sample document pages with one another, and detecting one or more cells within the sample target area on the image. The sample target area includes a sample target object. The method further includes extracting one or more informational features from each of the one or more cells. The one or more informational features define characteristics of a corresponding cell of the one or more cells. A machine learning model is trained using the one or more informational features extracted from each of the one or more cells, to detect the sample target object. A target object on a document page is detected using the trained machine learning model.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: April 9, 2024
    Assignee: Bluebeam, Inc.
    Inventors: Jae Min Lee, Joseph W. Wezorek
  • Patent number: 11944376
    Abstract: The present invention relates to systems and devices for delivering energy to tissue for a wide variety of applications, including medical procedures (e.g., tissue ablation, resection, cautery, vascular thrombosis, treatment of cardiac arrhythmias and dysrhythmias, electrosurgery, tissue harvest, etc.). In particular, the present invention relates to systems and devices for the delivery of energy with heat transfer ability. In some embodiments, the systems and devices also have variable characteristic impedance as a result of the use of heat transfer materials. In certain embodiments, methods are provided for treating a tissue region (e.g., a tumor) through application of energy with the systems and devices of the present invention.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: April 2, 2024
    Assignee: NeuWave Medical, Inc.
    Inventors: Daniel W. van der Weide, Fred T. Lee, Jr., Paul F. Laeseke, Christopher L Brace
  • Patent number: 11945772
    Abstract: A method including the step contacting an olefin, an alcohol, a metallosilicate catalyst and a solvent, wherein the solvent comprises structure (I): wherein R1 and R2 are each selected from the group consisting of an aryl group and an alkyl group with the proviso that at least one of R1 and R2 is an aryl group, further wherein n is 1-3.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: April 2, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Wen-Sheng Lee, Mingzhe Yu, Jing L. Houser, Sung-Yu Ku, Wanglin Yu, Stephen W. King, Paulami Majumdar, Le Wang
  • Publication number: 20240107439
    Abstract: A system is configured for reconfiguration of a Synchronization Signal Block (SSB) pattern. The system is configured for obtaining data including a configuration for a Synchronization Signal Block (SSB) transmission carrying a physical broadcast channel (PBCH), the configuration specifying, for an SSB of the configuration, resource elements (REs) allocated for transmitting a primary synchronization signal (PSS) to a user equipment (UE) and REs allocated for transmitting a secondary synchronization signal (SSS) to the UE. The system is configured for selecting a set of REs that are unused in the configuration for the SSB transmission, specifying a filling sequence for extending a synchronization signal or an SSB to the set of REs that are unused in the configuration of the SSB transmission, generating data including an enhanced configuration for the SSB transmission that includes the extended synchronization signal or the extended SSBs, and transmitting the SSB transmission using the enhanced configuration.
    Type: Application
    Filed: September 22, 2023
    Publication date: March 28, 2024
    Inventors: Yihong Qi, Amir Aminzadeh Gohari, Amir Farajidana, Dan Zhang, Herbert R. Dawid, Idan Bar-Sade, Keith W. Saints, Onurcan Iscan, Ruoheng Liu, Sami M. Almalfouh, Sung Eun Lee, Tudor Ninacs, Wenshu Zhang, Yuanye Wang
  • Publication number: 20240107473
    Abstract: A system is configured for reconfiguration of a Synchronization Signal Block (SSB) pattern. The system is configured for obtaining data including a configuration for a Synchronization Signal Block (SSB) transmission carrying a physical broadcast channel (PBCH), the configuration specifying, for an SSB of the configuration, resource elements (REs) allocated for transmitting a primary synchronization signal (PSS) to a user equipment (UE) and REs allocated for transmitting a secondary synchronization signal (SSS) to the UE. The system is configured for selecting a set of REs that are unused in the configuration for the SSB transmission, specifying a filling sequence for extending a synchronization signal or an SSB to the set of REs that are unused in the configuration of the SSB transmission, generating data including an enhanced configuration for the SSB transmission that includes the extended synchronization signal or the extended SSBs, and transmitting the SSB transmission using the enhanced configuration.
    Type: Application
    Filed: September 22, 2023
    Publication date: March 28, 2024
    Inventors: Yihong Qi, Amir Aminzadeh Gohari, Amir Farajidana, Dan Zhang, Herbert R. Dawid, Idan Bar-Sade, Keith W. Saints, Onurcan Iscan, Ruoheng Liu, Sami M. Almalfouh, Sung Eun Lee, Tudor Ninacs, Wenshu Zhang, Yuanye Wang
  • Patent number: 11943876
    Abstract: Pre-connected analyte sensors are provided. A pre-connected analyte sensor includes a sensor carrier attached to an analyte sensor. The sensor carrier includes a substrate configured for mechanical coupling of the sensor to testing, calibration, or wearable equipment. The sensor carrier also includes conductive contacts for electrically coupling sensor electrodes to the testing, calibration, or wearable equipment.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: March 26, 2024
    Assignee: DexCom, Inc.
    Inventors: Jason Halac, John Charles Barry, Becky L. Clark, Chris W. Dring, John Michael Gray, Kris Elliot Higley, Jeff Jackson, David A. Keller, Ted Tang Lee, Jason Mitchell, Kenneth Pirondini, David Rego, Ryan Everett Schoonmaker, Peter C. Simpson, Craig Thomas Gadd, Kyle Thomas Stewart, John Stanley Hayes
  • Publication number: 20240081903
    Abstract: Described here are devices, systems, and methods for closing the left atrial appendage. The methods described here utilize a closure device for closing the left atrial appendage and guides or expandable elements with ablation or abrading elements to ablate or abrade the left atrial appendage. In general, these methods include positioning a balloon at least partially within the atrial appendage, positioning a closure assembly of a closure device around an exterior of the atrial appendage, inflating the balloon, partially closing the closure assembly, ablating the interior tissue of the atrial appendage with the inflated balloon, removing the balloon from the atrial appendage, and closing the atrial appendage with the closure assembly.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 14, 2024
    Applicant: AtriCure, Inc.
    Inventors: Gregory W. FUNG, Randall J. LEE, Russell PONG, Robert L. CLARK, III, Arnold M. ESCANO
  • Patent number: 11925562
    Abstract: A modular acetabular cup assembly includes an acetabular cup, and a liner seated in the cup. The cup includes an end face, an apex opposite the end face, and a central axis extending between the apex and a center point of the end face. The liner includes an articular surface having a center of rotation which defines a pivot point of the acetabular cup assembly. In certain embodiments, the pivot point is laterally offset from the center point such that the end face is located between the pivot point and the apex.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: March 12, 2024
    Assignee: SMITH & NEPHEW, INC.
    Inventors: David W. Rister, Stephen J. Lee, Jeffrey Lee
  • Patent number: 11925683
    Abstract: Aspects of the present disclosure relate to antibodies that specifically bind proMyostatin and/or latent Myostatin and uses thereof.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: March 12, 2024
    Assignee: Scholar Rock, Inc.
    Inventors: Michelle Straub, Dong Yun Lee, William K. McConaughy, Katherine Jane Turner, Nagesh K. Mahanthappa, Justin W. Jackson
  • Patent number: 11928708
    Abstract: Dynamic campaign optimization systems and methods may be used to continuously test many alternative campaign configurations while allowing all configurations, including configurations formerly identified as successful and unsuccessful, to be re-tested in order to identify successful configurations that may previously have been identified as unsuccessful.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: March 12, 2024
    Assignee: SYSTEMI OPCO, LLC
    Inventors: Nathan R. Janos, Sanjeev M. Rao, John W. Meacham, III, Gyu-Ho Lee
  • Patent number: 11930621
    Abstract: Some embodiments include a thermal ground plane comprising a first and second casing with folding and non-folding regions. The thermal ground plane may also include a vapor structure and a mesh. The mesh may be disposed on an interior surface of the second casing and the mesh include a plurality of arteries extending substantially parallel with a length of the thermal ground plane. The folding region of the first casing may have an out-of-plane wavy structure. The valleys and peaks of the out-of-plane wavy structure, for example, may extend across a width of the first active region substantially parallel with a width of the thermal ground plane.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: March 12, 2024
    Assignee: Kelvin Thermal Technologies, Inc.
    Inventors: Ryan J. Lewis, Yung-Cheng Lee, Ali Nematollahisarvestani, Jason W. West, Kyle Wagner
  • Publication number: 20240079785
    Abstract: An electronic device may be provided with an antenna having a resonating element formed from a segment of peripheral conductive housing structures. A speaker may be aligned with first openings in the segment. A vent may be aligned with second openings in the segment. A connector may protrude through the segment. A trace combiner for the antenna may be patterned onto the speaker and may be coupled to the segment. Tuners for the antenna may be disposed on first and second flexible printed circuits that extend along opposing sides of the connector. The tuners may be controlled through the speaker. The second flexible printed circuit may extend along the vent. The vent may have a vent cowling with a cut-out region next to the tuner on the second flexible printed circuit.
    Type: Application
    Filed: August 30, 2023
    Publication date: March 7, 2024
    Inventors: Yiren Wang, Yuan Tao, Hao Xu, Yuancheng Xu, Enrique Ayala Vazquez, Nikolaj P. Kammersgaard, Eric W. Bates, Peter A. Dvorak, Victor C. Lee, Han Wang
  • Publication number: 20240079778
    Abstract: An electronic device may be provided with an antenna having a resonating element formed from a segment of peripheral conductive housing structures. A speaker may be aligned with first openings in the segment. A vent may be aligned with second openings in the segment. A connector may protrude through the segment. A trace combiner for the antenna may be patterned onto the speaker and may be coupled to the segment. Tuners for the antenna may be disposed on first and second flexible printed circuits that extend along opposing sides of the connector. The tuners may be controlled through the speaker. The second flexible printed circuit may extend along the vent. The vent may have a vent cowling with a cut-out region next to the tuner on the second flexible printed circuit.
    Type: Application
    Filed: August 30, 2023
    Publication date: March 7, 2024
    Inventors: Enrique Ayala Vazquez, Ming-Ju Tsai, Yiren Wang, Yuan Tao, Hao Xu, Sidharath Jain, Haozhan Tian, Yuancheng Xu, Eric W. Bates, Peter A. Dvorak, Harlan S. Dannenberg, Rees S. Parker, Obinna O. Onyemepu, Victor C. Lee, Han Wang, Hongfei Hu
  • Publication number: 20240079777
    Abstract: An electronic device may be provided with an antenna having a resonating element formed from a segment of peripheral conductive housing structures. A speaker may be aligned with first openings in the segment. A vent may be aligned with second openings in the segment. A connector may protrude through the segment. A trace combiner for the antenna may be patterned onto the speaker and may be coupled to the segment. Tuners for the antenna may be disposed on first and second flexible printed circuits that extend along opposing sides of the connector. The tuners may be controlled through the speaker. The second flexible printed circuit may extend along the vent. The vent may have a vent cowling with a cut-out region next to the tuner on the second flexible printed circuit.
    Type: Application
    Filed: August 30, 2023
    Publication date: March 7, 2024
    Inventors: Yiren Wang, Yuan Tao, Hao Xu, Hongfei Hu, Enrique Ayala Vazquez, Ming-Ju Tsai, Sidharath Jain, Haozhan Tian, Yuancheng Xu, Harlan S Dannenberg, Eric W Bates, Peter A Dvorak, Nicole E Cazares, Obinna O Onyemepu, Victor C Lee, Han Wang
  • Patent number: 11867457
    Abstract: A hybrid shellfish cooling system employs DC and AC cooling units using both solar power and AC electrical supply as energy sources. As temperature control and uniform temperature distribution in the cooling system are critical factors in reducing vibrio growth on raw oysters and reducing energy consumption, the system is equipped with a divider that optimizes airflow through the cooling system interior cabinet to achieve uniform temperature distribution in six individual internal compartments. Tests indicated that an average of 130 min. cooling was required to reach the suggested oyster temperatures of 7.2° C. and meet the cooling time requirement (i.e., 10 h or less). Airflow is further optimized via fan location and airflow direction, whereby configuration of a circulation fan on a lower part of the 12-volt DC section with an air supply from the 12-volt DC section to the 110-volt AC section achieves relatively uniform temperature distribution.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: January 9, 2024
    Assignee: Morgan State University
    Inventors: Seong W. Lee, Xuejun Qian, Yulai Yang
  • Patent number: D1017535
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: March 12, 2024
    Assignee: Parabit Systems, Inc
    Inventors: Robert J. Leiponis, Wilson M. Lee, Donald W. Strong