Patents by Inventor W. Marcus Trygstad

W. Marcus Trygstad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11414606
    Abstract: The chemical conversion of renewable oil to obtain a hydrocarbon product suitable as a fuel, includes (i) renewable oil including corn distillers oil (CDO), fatty acid glyceryl esters (FAGE), triacylglycerols (TAG), lipids, and free fatty acids (FFA), which are derived from non-fossil-fuel sources that include animals, plants, vegetables, fruits, grains, algae, and plankton (collectively “oil”); (ii) the chemical transformation of the oil by substantially reducing or eliminating the carboxylate functionality and native unsaturations of fatty acids contained therein; (iii) wherein the hydrocarbon product is substantially a mixture of saturated hydrocarbons, or alkanes, originating from corresponding structures in the oil, e.g., the hydrocarbon chains of fatty acids; and (iv) the product mixture is suitable as fuel that may be blended with or be used in place of fuel such as diesel derived from petroleum.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: August 16, 2022
    Assignee: Aduro Energy, Inc.
    Inventors: W. Marcus Trygstad, Anil K. Jhawar, Muhammad B. I. Chowdhury, Shaun J. Fraser
  • Publication number: 20220112351
    Abstract: A method is provided for deconstructing macromolecules (MM) into lower molecular weight (MW) fragments in high yield by promoting first desirable reactions (Reactions1) that result in chemolytic scission of bonds in the backbone, chain, matrix, or network that defines the MM and obtain a first product mixture (Product1). The method includes conveying the prepared feedstock in a flowpath toward a reactor while adding a first agent of a first type (A1T1) suitable for promoting Reactions1, and a second agent (A2) suitable for promoting Reactions1 to obtain a first reaction mixture which is heated under controlled pressure.
    Type: Application
    Filed: October 5, 2021
    Publication date: April 14, 2022
    Inventors: W. Marcus Trygstad, Anil K. Jhawar
  • Patent number: 10900327
    Abstract: A system and method is provided for upgrading a continuously flowing process stream including heavy crude oil (HCO). A reactor receives the process stream in combination with water, at an inlet temperature within a range of about 60° C. to about 200° C. The reactor includes one or more process flow tubes having a combined length of about 30 times their aggregated transverse cross-sectional dimension, and progressively heats the process stream to an outlet temperature T(max)1 within a range of between about 260° C. to about 400° C. The reactor maintains the process stream at a pressure sufficient to ensure that it remains a single phase at T(max)1. A controller selectively adjusts the rate of flow of the process stream through the reactor to maintain a total residence time of greater than about 1 minute and less than about 25 minutes.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: January 26, 2021
    Assignee: Aduro Energy, Inc.
    Inventor: W. Marcus Trygstad
  • Patent number: 10323492
    Abstract: A system and method is provided for upgrading a continuously flowing process stream including heavy crude oil (HCO). A reactor receives the process stream in combination with water, at an inlet temperature within a range of about 60° C. to about 200° C. The reactor includes one or more process flow tubes having a combined length of about 30 times their aggregated transverse cross-sectional dimension, and progressively heats the process stream to an outlet temperature T(max)1 within a range of between about 260° C. to about 400° C. The reactor maintains the process stream at a pressure sufficient to ensure that it remains a single phase at T(max)1. A controller selectively adjusts the rate of flow of the process stream through the reactor to maintain a total residence time of greater than about 1 minute and less than about 25 minutes.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: June 18, 2019
    Assignee: Aduro Energy, Inc.
    Inventor: W. Marcus Trygstad
  • Patent number: 10235481
    Abstract: A system and method for determining the vapor pressure of a process stream includes a hard analyzer configured to measure one or more dependent variables associated with a sample of the process stream, where a dependent variable is also a property of the sample such as vapor pressure; a sensor system comprising one or more sensors configured to capture one or more independent process variables associated with the process stream; an aggregation module for collecting and storing outputs from the hard analyzer and responses from the sensor system; and a modeling module capable of generating a vapor pressure model from the same. The system then applies the model to sensor responses for the process stream to generate vapor pressure values.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: March 19, 2019
    Assignee: Yokogawa Corporation of America
    Inventor: W. Marcus Trygstad
  • Patent number: 10175661
    Abstract: Systems, methods, and apparatuses are provided for determining properties of process streams, in particular, hydrocarbon processing streams. The systems, methods, and apparatuses frequently, for example, substantially in real-time, determine measurements for the properties of the process stream. The systems, methods, and apparatuses provide features that allow such properties of process streams to be accurately measured even as process conditions and other parameters that affect process operations change. More specifically, an analyzer having a measurement device configured to detect one or more independent variables of a process stream, a model configured to determine one or more analyzer measurements from the one or more independent variables, and a procedure to adjust the model using a corresponding primary measurement is disclosed.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: January 8, 2019
    Assignee: Yokogawa Corporation of America
    Inventor: W. Marcus Trygstad
  • Publication number: 20180073331
    Abstract: A system and method is provided for upgrading a continuously flowing process stream including heavy crude oil (HCO). A reactor receives the process stream in combination with water, at an inlet temperature within a range of about 60° C. to about 200° C. The reactor includes one or more process flow tubes having a combined length of about 30 times their aggregated transverse cross-sectional dimension, and progressively heats the process stream to an outlet temperature T(max)1 within a range of between about 260° C. to about 400° C. The reactor maintains the process stream at a pressure sufficient to ensure that it remains a single phase at T(max)1. A controller selectively adjusts the rate of flow of the process stream through the reactor to maintain a total residence time of greater than about 1 minute and less than about 25 minutes.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 15, 2018
    Inventor: W. Marcus Trygstad
  • Patent number: 9841373
    Abstract: A method and apparatus is provided for concentration determination of at least one component in an acid catalyst for hydrocarbon conversion containing an unknown concentration of an acid, an acid-soluble-oil (ASO), and water. An instrument configured for measuring a property of the acid catalyst, has responsivities to concentrations of one of the acid, ASO, and water, substantially independent of the concentrations of the others of the acid catalyst, ASO, and water. A temperature detector is configured to generate temperature data for the acid catalyst. A processor is configured to capture data generated by the temperature detector and the instrument, and to use the data in combination with a model to determine a temperature compensated concentration of the one of the acid, the ASO, and the water. Optionally, one or more other instruments configured for measuring other properties of the liquid mixture may also be used.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: December 12, 2017
    Assignee: Schneider Electric Systems USA, Inc.
    Inventor: W. Marcus Trygstad
  • Patent number: 9783742
    Abstract: A system and method is provided for upgrading a continuously flowing process stream including heavy crude oil (HCO). A reactor receives the process stream in combination with water, at an inlet temperature within a range of about 60° C. to about 200° C. The reactor includes one or more process flow tubes having a combined length of about 30 times their aggregated transverse cross-sectional dimension, and progressively heats the process stream to an outlet temperature T(max)1 within a range of between about 260° C. to about 400° C. The reactor maintains the process stream at a pressure sufficient to ensure that it remains a single phase at T(max)1. A controller selectively adjusts the rate of flow of the process stream through the reactor to maintain a total residence time of greater than about 1 minute and less than about 25 minutes.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: October 10, 2017
    Assignee: Aduro Energy, Inc.
    Inventor: W. Marcus Trygstad
  • Publication number: 20170269559
    Abstract: A system and method for determining the vapor pressure of a process stream includes a hard analyzer configured to measure one or more dependent variables associated with a sample of the process stream, where a dependent variable is also a property of the sample such as vapor pressure; a sensor system comprising one or more sensors configured to capture one or more independent process variables associated with the process stream; an aggregation module for collecting and storing outputs from the hard analyzer and responses from the sensor system; and a modeling module capable of generating a vapor pressure model from the same. The system then applies the model to sensor responses for the process stream to generate vapor pressure values.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Applicant: Yokogawa Corproation of America
    Inventor: W. Marcus Trygstad
  • Publication number: 20170241249
    Abstract: A system and method is provided for upgrading a continuously flowing process stream including heavy crude oil (HCO). A reactor receives the process stream in combination with water, at an inlet temperature within a range of about 60° C. to about 200° C. The reactor includes one or more process flow tubes having a combined length of about 30 times their aggregated transverse cross-sectional dimension, and progressively heats the process stream to an outlet temperature T(max)1 within a range of between about 260° C. to about 400° C. The reactor maintains the process stream at a pressure sufficient to ensure that it remains a single phase at T(max)1. A controller selectively adjusts the rate of flow of the process stream through the reactor to maintain a total residence time of greater than about 1 minute and less than about 25 minutes.
    Type: Application
    Filed: May 5, 2017
    Publication date: August 24, 2017
    Inventor: W. Marcus Trygstad
  • Patent number: 9644455
    Abstract: A system and method is provided for upgrading a continuously flowing process stream including heavy crude oil (HCO). A reactor receives the process stream in combination with water, at an inlet temperature within a range of about 60° C. to about 200° C. The reactor includes one or more process flow tubes having a combined length of about 30 times their aggregated transverse cross-sectional dimension, and progressively heats the process stream to an outlet temperature T(max)1 within a range of between about 260° C. to about 400° C. The reactor maintains the process stream at a pressure sufficient to ensure that it remains a single phase at T(max)1. A controller selectively adjusts the rate of flow of the process stream through the reactor to maintain a total residence time of greater than about 1 minute and less than about 25 minutes.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: May 9, 2017
    Assignee: Aduro Energy Inc.
    Inventor: W. Marcus Trygstad
  • Patent number: 9476847
    Abstract: A spectroscopic sample analysis apparatus includes an actively controlled heat exchanger in serial fluid communication with a spectroscopic analyzer, and a controller communicably coupled to the heat exchanger. The heat exchanger is disposed downstream of a fluid handler in the form of a stream selection unit/stream switching unit (SSU), a solvent/standard recirculation unit (SRU), and/or an auto-sampling unit (ASU). The SSU selectively couples individual stream inputs to an output port. The SRU includes a solvent/standard reservoir, and selectively couples output ports to the heat exchanger, and returns the solvent/standard sample to the reservoirs. The ASU includes a sample reservoir having a sample transfer pathway with a plurality of orifices disposed at spaced locations along a length thereof. The controller selectively actuates the fluid handler, enabling sample to flow there through to the heat exchanger, and actuates the heat exchanger to maintain the sample at a predetermined temperature.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: October 25, 2016
    Assignee: Invensys Systems, Inc.
    Inventors: W. Marcus Trygstad, Russell Jackson, Bruce A. Keen
  • Patent number: 8895314
    Abstract: A method and apparatus is provided for determining concentration of components in a liquid hydrocarbon mixture including hydrocarbons and water flowing through an alkylation process. A fluid flow path conveys the liquid continuously from the alkylation process through a first instrument configured for measuring a property of the liquid mixture, and having responsivities to concentration of the components, which are independent of the concentration of the water. A temperature detector generates temperature data for the liquid, and a second instrument measures another property of the liquid mixture. The instruments have mutually distinct responsivities to concentrations of the components.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: November 25, 2014
    Assignee: Invensys Systems, Inc.
    Inventors: W. Marcus Trygstad, Bruce A. Keen, Russell Jackson
  • Publication number: 20140309756
    Abstract: Systems, methods, and apparatuses are provided for determining properties of process streams, in particular, hydrocarbon processing streams. The systems, methods, and apparatuses frequently, for example, substantially in real-time, determine measurements for the properties of the process stream. The systems, methods, and apparatuses provide features that allow such properties of process streams to be accurately measured even as process conditions and other parameters that affect process operations change. More specifically, an analyzer having a measurement device configured to detect one or more independent variables of a process stream, a model configured to determine one or more analyzer measurements from the one or more independent variables, and a procedure to adjust the model using a corresponding primary measurement is disclosed.
    Type: Application
    Filed: February 5, 2014
    Publication date: October 16, 2014
    Applicant: YOKOGAWA CORPORATION OF AMERICA
    Inventor: W. Marcus Trygstad
  • Patent number: 8849582
    Abstract: A method and apparatus is provided for off-line concentration determination of components liquid hydrocarbon mixtures such as crude or heavy oil. A sampling unit continuously delivers a sample volume to a fluid flow path while a temperature control module maintains the sample at a predetermined setpoint temperature. A homogenization module helps prevent sample stratification while a flow control module maintain a constant sample flow rate. A spectrometer is communicably coupled to an optical transmission cell to transmit and receive radiation. The transmission cell includes collection optics to capture and aggregate non-collimated radiation emerging from the cell, for transmission to the spectrometer. The spectrometer measures sample spectra at a predetermined rate of flow of the sample volume through the transmission cell. A processor is configured to capture and use the spectra in combination with a model of spectra for the hydrocarbon mixture.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: September 30, 2014
    Assignee: Invensys Systems, Inc.
    Inventors: W. Marcus Trygstad, Bruce Keen, Russell Jackson
  • Publication number: 20140257711
    Abstract: A method and apparatus is provided for concentration determination of at least one component in an acid catalyst for hydrocarbon conversion containing an unknown concentration of an acid, an acid-soluble-oil (ASO), and water. An instrument configured for measuring a property of the acid catalyst, has responsivities to concentrations of one of the acid, ASO, and water, substantially independent of the concentrations of the others of the acid catalyst, ASO, and water. A temperature detector is configured to generate temperature data for the acid catalyst. A processor is configured to capture data generated by the temperature detector and the instrument, and to use the data in combination with a model to determine a temperature compensated concentration of the one of the acid, the ASO, and the water. Optionally, one or more other instruments configured for measuring other properties of the liquid mixture may also be used.
    Type: Application
    Filed: May 19, 2014
    Publication date: September 11, 2014
    Applicant: Invensys Systems, Inc.
    Inventor: W. Marcus Trygstad
  • Publication number: 20140238899
    Abstract: A system and method is provided for upgrading a continuously flowing process stream including heavy crude oil (HCO). A reactor receives the process stream in combination with water, at an inlet temperature within a range of about 60° C. to about 200° C. The reactor includes one or more process flow tubes having a combined length of about 30 times their aggregated transverse cross-sectional dimension, and progressively heats the process stream to an outlet temperature T(max)1 within a range of between about 260° C. to about 400° C. The reactor maintains the process stream at a pressure sufficient to ensure that it remains a single phase at T(max)1. A controller selectively adjusts the rate of flow of the process stream through the reactor to maintain a total residence time of greater than about 1 minute and less than about 25 minutes.
    Type: Application
    Filed: October 28, 2013
    Publication date: August 28, 2014
    Inventor: W. Marcus Trygstad
  • Publication number: 20140238681
    Abstract: A system and method is provided for upgrading a continuously flowing process stream including heavy crude oil (HCO). A reactor receives the process stream in combination with water, at an inlet temperature within a range of about 60° C. to about 200° C. The reactor includes one or more process flow tubes having a combined length of about 30 times their aggregated transverse cross-sectional dimension, and progressively heats the process stream to an outlet temperature T(max)1 within a range of between about 260° C. to about 400° C. The reactor maintains the process stream at a pressure sufficient to ensure that it remains a single phase at T(max)1. A controller selectively adjusts the rate of flow of the process stream through the reactor to maintain a total residence time of greater than about 1 minute and less than about 25 minutes.
    Type: Application
    Filed: March 18, 2014
    Publication date: August 28, 2014
    Applicant: ADURO ENERGY, INC.
    Inventor: W. Marcus Trygstad
  • Patent number: 8751167
    Abstract: A method and apparatus is provided for concentration determination of at least one component in an acid catalyst for hydrocarbon conversion containing an unknown concentration of an acid, an acid-soluble-oil (ASO), and water. An instrument configured for measuring a property of the acid catalyst, has responsivities to concentrations of one of the acid, ASO, and water, substantially independent of the concentrations of the others of the acid catalyst, ASO, and water. A temperature detector is configured to generate temperature data for the acid catalyst. A processor is configured to capture data generated by the temperature detector and the instrument, and to use the data in combination with a model to determine a temperature compensated concentration of the one of the acid, the ASO, and the water. Optionally, one or more other instruments configured for measuring other properties of the liquid mixture may also be used.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: June 10, 2014
    Assignee: Invensys Systems, Inc.
    Inventor: W. Marcus Trygstad